crawl4ai/tests/async/test_chunking_and_extraction_strategies.py

87 lines
3.3 KiB
Python
Raw Normal View History

2024-09-03 01:27:00 +08:00
import os
import sys
import pytest
import json
# Add the parent directory to the Python path
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
sys.path.append(parent_dir)
from crawl4ai import LLMConfig
2024-09-03 01:27:00 +08:00
from crawl4ai.async_webcrawler import AsyncWebCrawler
2025-01-13 19:19:58 +08:00
from crawl4ai.chunking_strategy import RegexChunking
from crawl4ai.extraction_strategy import LLMExtractionStrategy
2024-09-03 01:27:00 +08:00
@pytest.mark.asyncio
async def test_regex_chunking():
async with AsyncWebCrawler(verbose=True) as crawler:
url = "https://www.nbcnews.com/business"
chunking_strategy = RegexChunking(patterns=["\n\n"])
result = await crawler.arun(
2025-01-13 19:19:58 +08:00
url=url, chunking_strategy=chunking_strategy, bypass_cache=True
2024-09-03 01:27:00 +08:00
)
assert result.success
assert result.extracted_content
chunks = json.loads(result.extracted_content)
assert len(chunks) > 1 # Ensure multiple chunks were created
2025-01-13 19:19:58 +08:00
# @pytest.mark.asyncio
# async def test_cosine_strategy():
# async with AsyncWebCrawler(verbose=True) as crawler:
# url = "https://www.nbcnews.com/business"
# extraction_strategy = CosineStrategy(word_count_threshold=10, max_dist=0.2, linkage_method="ward", top_k=3, sim_threshold=0.3)
# result = await crawler.arun(
# url=url,
# extraction_strategy=extraction_strategy,
# bypass_cache=True
# )
# assert result.success
# assert result.extracted_content
# extracted_data = json.loads(result.extracted_content)
# assert len(extracted_data) > 0
# assert all('tags' in item for item in extracted_data)
2024-09-03 01:27:00 +08:00
2025-01-13 19:19:58 +08:00
2024-09-03 01:27:00 +08:00
@pytest.mark.asyncio
async def test_llm_extraction_strategy():
async with AsyncWebCrawler(verbose=True) as crawler:
url = "https://www.nbcnews.com/business"
extraction_strategy = LLMExtractionStrategy(
llm_config=LLMConfig(provider="openai/gpt-4o-mini",api_token=os.getenv("OPENAI_API_KEY")),
2025-01-13 19:19:58 +08:00
instruction="Extract only content related to technology",
2024-09-03 01:27:00 +08:00
)
result = await crawler.arun(
2025-01-13 19:19:58 +08:00
url=url, extraction_strategy=extraction_strategy, bypass_cache=True
2024-09-03 01:27:00 +08:00
)
assert result.success
assert result.extracted_content
extracted_data = json.loads(result.extracted_content)
assert len(extracted_data) > 0
2025-01-13 19:19:58 +08:00
assert all("content" in item for item in extracted_data)
2024-09-03 01:27:00 +08:00
# @pytest.mark.asyncio
# async def test_combined_chunking_and_extraction():
# async with AsyncWebCrawler(verbose=True) as crawler:
# url = "https://www.nbcnews.com/business"
# chunking_strategy = RegexChunking(patterns=["\n\n"])
# extraction_strategy = CosineStrategy(word_count_threshold=10, max_dist=0.2, linkage_method="ward", top_k=3, sim_threshold=0.3)
# result = await crawler.arun(
# url=url,
# chunking_strategy=chunking_strategy,
# extraction_strategy=extraction_strategy,
# bypass_cache=True
# )
# assert result.success
# assert result.extracted_content
# extracted_data = json.loads(result.extracted_content)
# assert len(extracted_data) > 0
# assert all('tags' in item for item in extracted_data)
# assert all('content' in item for item in extracted_data)
2024-09-03 01:27:00 +08:00
# Entry point for debugging
if __name__ == "__main__":
2025-01-13 19:19:58 +08:00
pytest.main([__file__, "-v"])