crawl4ai/docs/md/examples/research_assistant.md

220 lines
8.1 KiB
Markdown
Raw Normal View History

# Research Assistant Example with AsyncWebCrawler
2024-06-21 17:56:54 +08:00
This example demonstrates how to build an advanced research assistant using `Chainlit`, `Crawl4AI`'s `AsyncWebCrawler`, and various AI services. The assistant can crawl web pages asynchronously, answer questions based on the crawled content, and handle audio inputs.
2024-06-21 17:56:54 +08:00
## Step-by-Step Guide
2024-06-21 17:56:54 +08:00
1. **Install Required Packages**
Ensure you have the necessary packages installed:
2024-06-21 17:56:54 +08:00
```bash
pip install chainlit groq openai crawl4ai
2024-06-21 17:56:54 +08:00
```
2. **Import Libraries**
```python
import os
import time
import asyncio
2024-06-21 17:56:54 +08:00
from openai import AsyncOpenAI
import chainlit as cl
import re
from io import BytesIO
from chainlit.element import ElementBased
from groq import Groq
from crawl4ai import AsyncWebCrawler
from crawl4ai.extraction_strategy import NoExtractionStrategy
from crawl4ai.chunking_strategy import RegexChunking
2024-06-21 17:56:54 +08:00
client = AsyncOpenAI(base_url="https://api.groq.com/openai/v1", api_key=os.getenv("GROQ_API_KEY"))
# Instrument the OpenAI client
cl.instrument_openai()
```
3. **Set Configuration**
```python
settings = {
"model": "llama3-8b-8192",
"temperature": 0.5,
"max_tokens": 500,
"top_p": 1,
"frequency_penalty": 0,
"presence_penalty": 0,
}
```
4. **Define Utility Functions**
```python
def extract_urls(text):
url_pattern = re.compile(r'(https?://\S+)')
return url_pattern.findall(text)
async def crawl_urls(urls):
async with AsyncWebCrawler(verbose=True) as crawler:
results = await crawler.arun_many(
urls=urls,
word_count_threshold=10,
extraction_strategy=NoExtractionStrategy(),
chunking_strategy=RegexChunking(),
bypass_cache=True
)
return [result.markdown for result in results if result.success]
```
2024-06-21 17:56:54 +08:00
5. **Initialize Chat Start Event**
```python
@cl.on_chat_start
async def on_chat_start():
cl.user_session.set("session", {
"history": [],
"context": {}
})
await cl.Message(content="Welcome to the chat! How can I assist you today?").send()
2024-06-21 17:56:54 +08:00
```
6. **Handle Incoming Messages**
```python
@cl.on_message
async def on_message(message: cl.Message):
user_session = cl.user_session.get("session")
# Extract URLs from the user's message
urls = extract_urls(message.content)
if urls:
crawled_contents = await crawl_urls(urls)
for url, content in zip(urls, crawled_contents):
ref_number = f"REF_{len(user_session['context']) + 1}"
user_session["context"][ref_number] = {
"url": url,
"content": content
}
2024-06-21 17:56:54 +08:00
user_session["history"].append({
"role": "user",
"content": message.content
})
# Create a system message that includes the context
context_messages = [
f'<appendix ref="{ref}">\n{data["content"]}\n</appendix>'
for ref, data in user_session["context"].items()
]
system_message = {
"role": "system",
"content": (
"You are a helpful bot. Use the following context for answering questions. "
"Refer to the sources using the REF number in square brackets, e.g., [1], only if the source is given in the appendices below.\n\n"
"If the question requires any information from the provided appendices or context, refer to the sources. "
"If not, there is no need to add a references section. "
"At the end of your response, provide a reference section listing the URLs and their REF numbers only if sources from the appendices were used.\n\n"
"\n\n".join(context_messages)
) if context_messages else "You are a helpful assistant."
}
2024-06-21 17:56:54 +08:00
msg = cl.Message(content="")
await msg.send()
# Get response from the LLM
stream = await client.chat.completions.create(
messages=[system_message, *user_session["history"]],
2024-06-21 17:56:54 +08:00
stream=True,
**settings
)
assistant_response = ""
async for part in stream:
if token := part.choices[0].delta.content:
assistant_response += token
await msg.stream_token(token)
# Add assistant message to the history
user_session["history"].append({
"role": "assistant",
"content": assistant_response
})
await msg.update()
# Append the reference section to the assistant's response
if user_session["context"]:
reference_section = "\n\nReferences:\n"
for ref, data in user_session["context"].items():
reference_section += f"[{ref.split('_')[1]}]: {data['url']}\n"
msg.content += reference_section
await msg.update()
2024-06-21 17:56:54 +08:00
```
7. **Handle Audio Input**
```python
@cl.on_audio_chunk
async def on_audio_chunk(chunk: cl.AudioChunk):
if chunk.isStart:
buffer = BytesIO()
buffer.name = f"input_audio.{chunk.mimeType.split('/')[1]}"
cl.user_session.set("audio_buffer", buffer)
cl.user_session.set("audio_mime_type", chunk.mimeType)
cl.user_session.get("audio_buffer").write(chunk.data)
@cl.step(type="tool")
async def speech_to_text(audio_file):
response = await client.audio.transcriptions.create(
model="whisper-large-v3", file=audio_file
)
return response.text
@cl.on_audio_end
async def on_audio_end(elements: list[ElementBased]):
audio_buffer: BytesIO = cl.user_session.get("audio_buffer")
audio_buffer.seek(0)
audio_file = audio_buffer.read()
audio_mime_type: str = cl.user_session.get("audio_mime_type")
start_time = time.time()
transcription = await speech_to_text((audio_buffer.name, audio_file, audio_mime_type))
end_time = time.time()
print(f"Transcription took {end_time - start_time} seconds")
user_msg = cl.Message(author="You", type="user_message", content=transcription)
2024-06-21 17:56:54 +08:00
await user_msg.send()
await on_message(user_msg)
```
8. **Run the Chat Application**
```python
if __name__ == "__main__":
from chainlit.cli import run_chainlit
run_chainlit(__file__)
```
## Explanation
- **Libraries and Configuration**: We import necessary libraries, including `AsyncWebCrawler` from `crawl4ai`.
- **Utility Functions**:
- `extract_urls`: Uses regex to find URLs in messages.
- `crawl_urls`: An asynchronous function that uses `AsyncWebCrawler` to fetch content from multiple URLs concurrently.
- **Chat Start Event**: Initializes the chat session and sends a welcome message.
- **Message Handling**:
- Extracts URLs from user messages.
- Asynchronously crawls the URLs using `AsyncWebCrawler`.
- Updates chat history and context with crawled content.
- Generates a response using the LLM, incorporating the crawled context.
- **Audio Handling**: Captures, buffers, and transcribes audio input, then processes the transcription as text.
- **Running the Application**: Starts the Chainlit server for interaction with the assistant.
## Key Improvements
1. **Asynchronous Web Crawling**: Using `AsyncWebCrawler` allows for efficient, concurrent crawling of multiple URLs.
2. **Improved Context Management**: The assistant now maintains a context of crawled content, allowing for more informed responses.
3. **Dynamic Reference System**: The assistant can refer to specific sources in its responses and provide a reference section.
4. **Seamless Audio Integration**: The ability to handle audio inputs makes the assistant more versatile and user-friendly.
This updated Research Assistant showcases how to create a powerful, interactive tool that can efficiently fetch and process web content, handle various input types, and provide informed responses based on the gathered information.