💡 After installation, if you have used "torch", "transformer" or "all", it's recommended to run the following CLI command to load the required models. This is optional but will boost the performance and speed of the crawler. You need to do this only once, this is only for when you install using []
Crawl4AI can be run as a local server using Docker. The Dockerfile supports different installation options to cater to various use cases. Here's how you can build and run the Docker image:
### Default Installation
The default installation includes the basic Crawl4AI package without additional dependencies or pre-downloaded models.
- The `--platform linux/amd64` flag is necessary for Mac users with M1/M2 chips to ensure compatibility.
- The `-t` flag tags the image with a name (and optionally a tag in the 'name:tag' format).
- The `-d` flag runs the container in detached mode.
- The `-p 8000:80` flag maps port 8000 on the host to port 80 in the container.
Choose the installation option that best suits your needs. The default installation is suitable for basic usage, while the other options provide additional capabilities for more advanced use cases.
You can also use Crawl4AI in a Google Colab notebook for easy setup and experimentation. Simply open the following Colab notebook and follow the instructions:
⚠️ This collab is a bit outdated. I'm updating it with the newest versions, so please refer to the website for the latest documentation. This will be updated in a few days, and you'll have the latest version here. Thank you so much.
[](https://colab.research.google.com/drive/1wz8u30rvbq6Scodye9AGCw8Qg_Z8QGsk)