2024-09-03 01:27:00 +08:00
|
|
|
import os
|
|
|
|
import sys
|
|
|
|
import pytest
|
|
|
|
import asyncio
|
|
|
|
import json
|
|
|
|
|
|
|
|
# Add the parent directory to the Python path
|
|
|
|
parent_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
sys.path.append(parent_dir)
|
|
|
|
|
|
|
|
from crawl4ai.async_webcrawler import AsyncWebCrawler
|
|
|
|
from crawl4ai.chunking_strategy import RegexChunking, NlpSentenceChunking
|
|
|
|
from crawl4ai.extraction_strategy import CosineStrategy, LLMExtractionStrategy
|
|
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
|
|
async def test_regex_chunking():
|
|
|
|
async with AsyncWebCrawler(verbose=True) as crawler:
|
|
|
|
url = "https://www.nbcnews.com/business"
|
|
|
|
chunking_strategy = RegexChunking(patterns=["\n\n"])
|
|
|
|
result = await crawler.arun(
|
|
|
|
url=url,
|
|
|
|
chunking_strategy=chunking_strategy,
|
|
|
|
bypass_cache=True
|
|
|
|
)
|
|
|
|
assert result.success
|
|
|
|
assert result.extracted_content
|
|
|
|
chunks = json.loads(result.extracted_content)
|
|
|
|
assert len(chunks) > 1 # Ensure multiple chunks were created
|
|
|
|
|
2024-09-26 15:09:49 +08:00
|
|
|
# @pytest.mark.asyncio
|
|
|
|
# async def test_cosine_strategy():
|
|
|
|
# async with AsyncWebCrawler(verbose=True) as crawler:
|
|
|
|
# url = "https://www.nbcnews.com/business"
|
|
|
|
# extraction_strategy = CosineStrategy(word_count_threshold=10, max_dist=0.2, linkage_method="ward", top_k=3, sim_threshold=0.3)
|
|
|
|
# result = await crawler.arun(
|
|
|
|
# url=url,
|
|
|
|
# extraction_strategy=extraction_strategy,
|
|
|
|
# bypass_cache=True
|
|
|
|
# )
|
|
|
|
# assert result.success
|
|
|
|
# assert result.extracted_content
|
|
|
|
# extracted_data = json.loads(result.extracted_content)
|
|
|
|
# assert len(extracted_data) > 0
|
|
|
|
# assert all('tags' in item for item in extracted_data)
|
2024-09-03 01:27:00 +08:00
|
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
|
|
async def test_llm_extraction_strategy():
|
|
|
|
async with AsyncWebCrawler(verbose=True) as crawler:
|
|
|
|
url = "https://www.nbcnews.com/business"
|
|
|
|
extraction_strategy = LLMExtractionStrategy(
|
|
|
|
provider="openai/gpt-4o-mini",
|
|
|
|
api_token=os.getenv('OPENAI_API_KEY'),
|
|
|
|
instruction="Extract only content related to technology"
|
|
|
|
)
|
|
|
|
result = await crawler.arun(
|
|
|
|
url=url,
|
|
|
|
extraction_strategy=extraction_strategy,
|
|
|
|
bypass_cache=True
|
|
|
|
)
|
|
|
|
assert result.success
|
|
|
|
assert result.extracted_content
|
|
|
|
extracted_data = json.loads(result.extracted_content)
|
|
|
|
assert len(extracted_data) > 0
|
|
|
|
assert all('content' in item for item in extracted_data)
|
|
|
|
|
2024-09-26 15:09:49 +08:00
|
|
|
# @pytest.mark.asyncio
|
|
|
|
# async def test_combined_chunking_and_extraction():
|
|
|
|
# async with AsyncWebCrawler(verbose=True) as crawler:
|
|
|
|
# url = "https://www.nbcnews.com/business"
|
|
|
|
# chunking_strategy = RegexChunking(patterns=["\n\n"])
|
|
|
|
# extraction_strategy = CosineStrategy(word_count_threshold=10, max_dist=0.2, linkage_method="ward", top_k=3, sim_threshold=0.3)
|
|
|
|
# result = await crawler.arun(
|
|
|
|
# url=url,
|
|
|
|
# chunking_strategy=chunking_strategy,
|
|
|
|
# extraction_strategy=extraction_strategy,
|
|
|
|
# bypass_cache=True
|
|
|
|
# )
|
|
|
|
# assert result.success
|
|
|
|
# assert result.extracted_content
|
|
|
|
# extracted_data = json.loads(result.extracted_content)
|
|
|
|
# assert len(extracted_data) > 0
|
|
|
|
# assert all('tags' in item for item in extracted_data)
|
|
|
|
# assert all('content' in item for item in extracted_data)
|
2024-09-03 01:27:00 +08:00
|
|
|
|
|
|
|
# Entry point for debugging
|
|
|
|
if __name__ == "__main__":
|
|
|
|
pytest.main([__file__, "-v"])
|