You can try this Colab for a quick start: [](https://colab.research.google.com/drive/1sJPAmeLj5PMrg2VgOwMJ2ubGIcK0cJeX#scrollTo=g1RrmI4W_rPk)
💡 After installation, if you have used "torch", "transformer" or "all", it's recommended to run the following CLI command to load the required models. This is optional but will boost the performance and speed of the crawler. You need to do this only once, this is only for when you install using []
Crawl4AI can be run as a local server using Docker. The Dockerfile supports different installation options to cater to various use cases. Here's how you can build and run the Docker image:
### Default Installation
The default installation includes the basic Crawl4AI package without additional dependencies or pre-downloaded models.
- The `--platform linux/amd64` flag is necessary for Mac users with M1/M2 chips to ensure compatibility.
- The `-t` flag tags the image with a name (and optionally a tag in the 'name:tag' format).
- The `-d` flag runs the container in detached mode.
- The `-p 8000:80` flag maps port 8000 on the host to port 80 in the container.
Choose the installation option that best suits your needs. The default installation is suitable for basic usage, while the other options provide additional capabilities for more advanced use cases.
You can use pre-built Crawl4AI images from Docker Hub, which are available for all platforms (Mac, Linux, Windows). We have official images as well as a community-contributed image (Thanks to https://github.com/FractalMind):
docker run -d -p 8000:80 unclecode/crawl4ai:latest
```
### Community-Contributed Image
A stable version of Crawl4AI is also available, created and maintained by a community member:
```bash
# Pull the community-contributed image
docker pull ryser007/crawl4ai:stable
# Run the container
docker run -d -p 8000:80 ryser007/crawl4ai:stable
```
We'd like to express our gratitude to GitHub user [@FractalMind](https://github.com/FractalMind) for creating and maintaining this stable version of the Crawl4AI Docker image. Community contributions like this are invaluable to the project.
### Testing the Installation
After running the container, you can test if it's working correctly: