feat(docker): update Docker deployment for v0.6.0

Major updates to Docker deployment infrastructure:
- Switch default port to 11235 for all services
- Add MCP (Model Context Protocol) support with WebSocket/SSE endpoints
- Simplify docker-compose.yml with auto-platform detection
- Update documentation with new features and examples
- Consolidate configuration and improve resource management

BREAKING CHANGE: Default port changed from 8020 to 11235. Update your configurations and deployment scripts accordingly.
This commit is contained in:
UncleCode 2025-04-22 22:35:25 +08:00
parent f3ebb38edf
commit 4812f08a73
14 changed files with 726 additions and 1303 deletions

View File

@ -5,6 +5,53 @@ All notable changes to Crawl4AI will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## [0.6.0rc1r1] 20250422
### Added
- Browser pooling with page prewarming and finegrained **geolocation, locale, and timezone** controls
- Crawler pool manager (SDK + Docker API) for smarter resource allocation
- Network & console log capture plus MHTML snapshot export
- **Table extractor**: turn HTML `<table>`s into DataFrames or CSV with one flag
- Highvolume stresstest framework in `tests/memory` and API load scripts
- MCP protocol endpoints with socket & SSE support; playground UI scaffold
- Docs v2 revamp: TOC, GitHub badge, copycode buttons, Docker API demo
- “Ask AI” helper button *(workinprogress, shipping soon)*
- New examples: geolocation usage, network/console capture, Docker API, markdown source selection, crypto analysis
- Expanded automated test suites for browser, Docker, MCP and memory benchmarks
### Changed
- Consolidated and renamed browser strategies; legacy docker strategy modules removed
- `ProxyConfig` moved to `async_configs`
- Server migrated to poolbased crawler management
- FastAPI validators replace custom query validation
- Docker build now uses Chromium base image
- Largescale repo tidyup (≈36 k insertions, ≈5 k deletions)
### Fixed
- Async crawler session leak, duplicatevisit handling, URL normalisation
- Targetelement regressions in scraping strategies
- LoggedURL readability, encodedURL decoding, middle truncation for long URLs
- Closed issues: #701, #733, #756, #774, #804, #822, #839, #841, #842, #843, #867, #902, #911
### Removed
- Obsolete modules under `crawl4ai/browser/*` superseded by the new pooled browser layer
### Deprecated
- Old markdown generator names now alias `DefaultMarkdownGenerator` and emit warnings
---
#### Upgrade notes
1. Update any direct imports from `crawl4ai/browser/*` to the new pooled browser modules
2. If you override `AsyncPlaywrightCrawlerStrategy.get_page`, adopt the new signature
3. Rebuild Docker images to pull the new Chromium layer
4. Switch to `DefaultMarkdownGenerator` (or silence the deprecation warning)
---
`121 files changed, ≈36 223 insertions, ≈4 975 deletions` :contentReference[oaicite:0]{index=0}&#8203;:contentReference[oaicite:1]{index=1}
### [Feature] 2025-04-21
- Implemented MCP protocol for machine-to-machine communication
- Added WebSocket and SSE transport for MCP server

View File

@ -1,5 +1,10 @@
FROM python:3.10-slim
# C4ai version
ARG C4AI_VER=0.6.0
ENV C4AI_VERSION=$C4AI_VER
LABEL c4ai.version=$C4AI_VER
# Set build arguments
ARG APP_HOME=/app
ARG GITHUB_REPO=https://github.com/unclecode/crawl4ai.git

View File

@ -1,2 +1,3 @@
# crawl4ai/_version.py
__version__ = "0.5.0.post8"
__version__ = "0.6.0rc1"

View File

@ -1,644 +0,0 @@
# Crawl4AI Docker Guide 🐳
## Table of Contents
- [Prerequisites](#prerequisites)
- [Installation](#installation)
- [Option 1: Using Docker Compose (Recommended)](#option-1-using-docker-compose-recommended)
- [Option 2: Manual Local Build & Run](#option-2-manual-local-build--run)
- [Option 3: Using Pre-built Docker Hub Images](#option-3-using-pre-built-docker-hub-images)
- [Dockerfile Parameters](#dockerfile-parameters)
- [Using the API](#using-the-api)
- [Understanding Request Schema](#understanding-request-schema)
- [REST API Examples](#rest-api-examples)
- [Python SDK](#python-sdk)
- [Metrics & Monitoring](#metrics--monitoring)
- [Deployment Scenarios](#deployment-scenarios)
- [Complete Examples](#complete-examples)
- [Server Configuration](#server-configuration)
- [Understanding config.yml](#understanding-configyml)
- [JWT Authentication](#jwt-authentication)
- [Configuration Tips and Best Practices](#configuration-tips-and-best-practices)
- [Customizing Your Configuration](#customizing-your-configuration)
- [Configuration Recommendations](#configuration-recommendations)
- [Getting Help](#getting-help)
## Prerequisites
Before we dive in, make sure you have:
- Docker installed and running (version 20.10.0 or higher), including `docker compose` (usually bundled with Docker Desktop).
- `git` for cloning the repository.
- At least 4GB of RAM available for the container (more recommended for heavy use).
- Python 3.10+ (if using the Python SDK).
- Node.js 16+ (if using the Node.js examples).
> 💡 **Pro tip**: Run `docker info` to check your Docker installation and available resources.
## Installation
We offer several ways to get the Crawl4AI server running. Docker Compose is the easiest way to manage local builds and runs.
### Option 1: Using Docker Compose (Recommended)
Docker Compose simplifies building and running the service, especially for local development and testing across different platforms.
#### 1. Clone Repository
```bash
git clone https://github.com/unclecode/crawl4ai.git
cd crawl4ai
```
#### 2. Environment Setup (API Keys)
If you plan to use LLMs, copy the example environment file and add your API keys. This file should be in the **project root directory**.
```bash
# Make sure you are in the 'crawl4ai' root directory
cp deploy/docker/.llm.env.example .llm.env
# Now edit .llm.env and add your API keys
# Example content:
# OPENAI_API_KEY=sk-your-key
# ANTHROPIC_API_KEY=your-anthropic-key
# ...
```
> 🔑 **Note**: Keep your API keys secure! Never commit `.llm.env` to version control.
#### 3. Build and Run with Compose
The `docker-compose.yml` file in the project root defines services for different scenarios using **profiles**.
* **Build and Run Locally (AMD64):**
```bash
# Builds the image locally using Dockerfile and runs it
docker compose --profile local-amd64 up --build -d
```
* **Build and Run Locally (ARM64):**
```bash
# Builds the image locally using Dockerfile and runs it
docker compose --profile local-arm64 up --build -d
```
* **Run Pre-built Image from Docker Hub (AMD64):**
```bash
# Pulls and runs the specified AMD64 image from Docker Hub
# (Set VERSION env var for specific tags, e.g., VERSION=0.5.1-d1)
docker compose --profile hub-amd64 up -d
```
* **Run Pre-built Image from Docker Hub (ARM64):**
```bash
# Pulls and runs the specified ARM64 image from Docker Hub
docker compose --profile hub-arm64 up -d
```
> The server will be available at `http://localhost:11235`.
#### 4. Stopping Compose Services
```bash
# Stop the service(s) associated with a profile (e.g., local-amd64)
docker compose --profile local-amd64 down
```
### Option 2: Manual Local Build & Run
If you prefer not to use Docker Compose for local builds.
#### 1. Clone Repository & Setup Environment
Follow steps 1 and 2 from the Docker Compose section above (clone repo, `cd crawl4ai`, create `.llm.env` in the root).
#### 2. Build the Image (Multi-Arch)
Use `docker buildx` to build the image. This example builds for multiple platforms and loads the image matching your host architecture into the local Docker daemon.
```bash
# Make sure you are in the 'crawl4ai' root directory
docker buildx build --platform linux/amd64,linux/arm64 -t crawl4ai-local:latest --load .
```
#### 3. Run the Container
* **Basic run (no LLM support):**
```bash
# Replace --platform if your host is ARM64
docker run -d \
-p 11235:11235 \
--name crawl4ai-standalone \
--shm-size=1g \
--platform linux/amd64 \
crawl4ai-local:latest
```
* **With LLM support:**
```bash
# Make sure .llm.env is in the current directory (project root)
# Replace --platform if your host is ARM64
docker run -d \
-p 11235:11235 \
--name crawl4ai-standalone \
--env-file .llm.env \
--shm-size=1g \
--platform linux/amd64 \
crawl4ai-local:latest
```
> The server will be available at `http://localhost:11235`.
#### 4. Stopping the Manual Container
```bash
docker stop crawl4ai-standalone && docker rm crawl4ai-standalone
```
### Option 3: Using Pre-built Docker Hub Images
Pull and run images directly from Docker Hub without building locally.
#### 1. Pull the Image
We use a versioning scheme like `LIBRARY_VERSION-dREVISION` (e.g., `0.5.1-d1`). The `latest` tag points to the most recent stable release. Images are built with multi-arch manifests, so Docker usually pulls the correct version for your system automatically.
```bash
# Pull a specific version (recommended for stability)
docker pull unclecode/crawl4ai:0.5.1-d1
# Or pull the latest stable version
docker pull unclecode/crawl4ai:latest
```
#### 2. Setup Environment (API Keys)
If using LLMs, create the `.llm.env` file in a directory of your choice, similar to Step 2 in the Compose section.
#### 3. Run the Container
* **Basic run:**
```bash
docker run -d \
-p 11235:11235 \
--name crawl4ai-hub \
--shm-size=1g \
unclecode/crawl4ai:0.5.1-d1 # Or use :latest
```
* **With LLM support:**
```bash
# Make sure .llm.env is in the current directory you are running docker from
docker run -d \
-p 11235:11235 \
--name crawl4ai-hub \
--env-file .llm.env \
--shm-size=1g \
unclecode/crawl4ai:0.5.1-d1 # Or use :latest
```
> The server will be available at `http://localhost:11235`.
#### 4. Stopping the Hub Container
```bash
docker stop crawl4ai-hub && docker rm crawl4ai-hub
```
#### Docker Hub Versioning Explained
* **Image Name:** `unclecode/crawl4ai`
* **Tag Format:** `LIBRARY_VERSION-dREVISION`
* `LIBRARY_VERSION`: The Semantic Version of the core `crawl4ai` Python library included (e.g., `0.5.1`).
* `dREVISION`: An incrementing number (starting at `d1`) for Docker build changes made *without* changing the library version (e.g., base image updates, dependency fixes). Resets to `d1` for each new `LIBRARY_VERSION`.
* **Example:** `unclecode/crawl4ai:0.5.1-d1`
* **`latest` Tag:** Points to the most recent stable `LIBRARY_VERSION-dREVISION`.
* **Multi-Arch:** Images support `linux/amd64` and `linux/arm64`. Docker automatically selects the correct architecture.
---
*(Rest of the document remains largely the same, but with key updates below)*
---
## Dockerfile Parameters
You can customize the image build process using build arguments (`--build-arg`). These are typically used via `docker buildx build` or within the `docker-compose.yml` file.
```bash
# Example: Build with 'all' features using buildx
docker buildx build \
--platform linux/amd64,linux/arm64 \
--build-arg INSTALL_TYPE=all \
-t yourname/crawl4ai-all:latest \
--load \
. # Build from root context
```
### Build Arguments Explained
| Argument | Description | Default | Options |
| :----------- | :--------------------------------------- | :-------- | :--------------------------------- |
| INSTALL_TYPE | Feature set | `default` | `default`, `all`, `torch`, `transformer` |
| ENABLE_GPU | GPU support (CUDA for AMD64) | `false` | `true`, `false` |
| APP_HOME | Install path inside container (advanced) | `/app` | any valid path |
| USE_LOCAL | Install library from local source | `true` | `true`, `false` |
| GITHUB_REPO | Git repo to clone if USE_LOCAL=false | *(see Dockerfile)* | any git URL |
| GITHUB_BRANCH| Git branch to clone if USE_LOCAL=false | `main` | any branch name |
*(Note: PYTHON_VERSION is fixed by the `FROM` instruction in the Dockerfile)*
### Build Best Practices
1. **Choose the Right Install Type**
* `default`: Basic installation, smallest image size. Suitable for most standard web scraping and markdown generation.
* `all`: Full features including `torch` and `transformers` for advanced extraction strategies (e.g., CosineStrategy, certain LLM filters). Significantly larger image. Ensure you need these extras.
2. **Platform Considerations**
* Use `buildx` for building multi-architecture images, especially for pushing to registries.
* Use `docker compose` profiles (`local-amd64`, `local-arm64`) for easy platform-specific local builds.
3. **Performance Optimization**
* The image automatically includes platform-specific optimizations (OpenMP for AMD64, OpenBLAS for ARM64).
---
## Using the API
Communicate with the running Docker server via its REST API (defaulting to `http://localhost:11235`). You can use the Python SDK or make direct HTTP requests.
### Python SDK
Install the SDK: `pip install crawl4ai`
```python
import asyncio
from crawl4ai.docker_client import Crawl4aiDockerClient
from crawl4ai import BrowserConfig, CrawlerRunConfig, CacheMode # Assuming you have crawl4ai installed
async def main():
# Point to the correct server port
async with Crawl4aiDockerClient(base_url="http://localhost:11235", verbose=True) as client:
# If JWT is enabled on the server, authenticate first:
# await client.authenticate("user@example.com") # See Server Configuration section
# Example Non-streaming crawl
print("--- Running Non-Streaming Crawl ---")
results = await client.crawl(
["https://httpbin.org/html"],
browser_config=BrowserConfig(headless=True), # Use library classes for config aid
crawler_config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
)
if results: # client.crawl returns None on failure
print(f"Non-streaming results success: {results.success}")
if results.success:
for result in results: # Iterate through the CrawlResultContainer
print(f"URL: {result.url}, Success: {result.success}")
else:
print("Non-streaming crawl failed.")
# Example Streaming crawl
print("\n--- Running Streaming Crawl ---")
stream_config = CrawlerRunConfig(stream=True, cache_mode=CacheMode.BYPASS)
try:
async for result in await client.crawl( # client.crawl returns an async generator for streaming
["https://httpbin.org/html", "https://httpbin.org/links/5/0"],
browser_config=BrowserConfig(headless=True),
crawler_config=stream_config
):
print(f"Streamed result: URL: {result.url}, Success: {result.success}")
except Exception as e:
print(f"Streaming crawl failed: {e}")
# Example Get schema
print("\n--- Getting Schema ---")
schema = await client.get_schema()
print(f"Schema received: {bool(schema)}") # Print whether schema was received
if __name__ == "__main__":
asyncio.run(main())
```
*(SDK parameters like timeout, verify_ssl etc. remain the same)*
### Second Approach: Direct API Calls
Crucially, when sending configurations directly via JSON, they **must** follow the `{"type": "ClassName", "params": {...}}` structure for any non-primitive value (like config objects or strategies). Dictionaries must be wrapped as `{"type": "dict", "value": {...}}`.
*(Keep the detailed explanation of Configuration Structure, Basic Pattern, Simple vs Complex, Strategy Pattern, Complex Nested Example, Quick Grammar Overview, Important Rules, Pro Tip)*
#### More Examples *(Ensure Schema example uses type/value wrapper)*
**Advanced Crawler Configuration**
*(Keep example, ensure cache_mode uses valid enum value like "bypass")*
**Extraction Strategy**
```json
{
"crawler_config": {
"type": "CrawlerRunConfig",
"params": {
"extraction_strategy": {
"type": "JsonCssExtractionStrategy",
"params": {
"schema": {
"type": "dict",
"value": {
"baseSelector": "article.post",
"fields": [
{"name": "title", "selector": "h1", "type": "text"},
{"name": "content", "selector": ".content", "type": "html"}
]
}
}
}
}
}
}
}
```
**LLM Extraction Strategy** *(Keep example, ensure schema uses type/value wrapper)*
*(Keep Deep Crawler Example)*
### REST API Examples
Update URLs to use port `11235`.
#### Simple Crawl
```python
import requests
# Configuration objects converted to the required JSON structure
browser_config_payload = {
"type": "BrowserConfig",
"params": {"headless": True}
}
crawler_config_payload = {
"type": "CrawlerRunConfig",
"params": {"stream": False, "cache_mode": "bypass"} # Use string value of enum
}
crawl_payload = {
"urls": ["https://httpbin.org/html"],
"browser_config": browser_config_payload,
"crawler_config": crawler_config_payload
}
response = requests.post(
"http://localhost:11235/crawl", # Updated port
# headers={"Authorization": f"Bearer {token}"}, # If JWT is enabled
json=crawl_payload
)
print(f"Status Code: {response.status_code}")
if response.ok:
print(response.json())
else:
print(f"Error: {response.text}")
```
#### Streaming Results
```python
import json
import httpx # Use httpx for async streaming example
async def test_stream_crawl(token: str = None): # Made token optional
"""Test the /crawl/stream endpoint with multiple URLs."""
url = "http://localhost:11235/crawl/stream" # Updated port
payload = {
"urls": [
"https://httpbin.org/html",
"https://httpbin.org/links/5/0",
],
"browser_config": {
"type": "BrowserConfig",
"params": {"headless": True, "viewport": {"type": "dict", "value": {"width": 1200, "height": 800}}} # Viewport needs type:dict
},
"crawler_config": {
"type": "CrawlerRunConfig",
"params": {"stream": True, "cache_mode": "bypass"}
}
}
headers = {}
# if token:
# headers = {"Authorization": f"Bearer {token}"} # If JWT is enabled
try:
async with httpx.AsyncClient() as client:
async with client.stream("POST", url, json=payload, headers=headers, timeout=120.0) as response:
print(f"Status: {response.status_code} (Expected: 200)")
response.raise_for_status() # Raise exception for bad status codes
# Read streaming response line-by-line (NDJSON)
async for line in response.aiter_lines():
if line:
try:
data = json.loads(line)
# Check for completion marker
if data.get("status") == "completed":
print("Stream completed.")
break
print(f"Streamed Result: {json.dumps(data, indent=2)}")
except json.JSONDecodeError:
print(f"Warning: Could not decode JSON line: {line}")
except httpx.HTTPStatusError as e:
print(f"HTTP error occurred: {e.response.status_code} - {e.response.text}")
except Exception as e:
print(f"Error in streaming crawl test: {str(e)}")
# To run this example:
# import asyncio
# asyncio.run(test_stream_crawl())
```
---
## Metrics & Monitoring
Keep an eye on your crawler with these endpoints:
- `/health` - Quick health check
- `/metrics` - Detailed Prometheus metrics
- `/schema` - Full API schema
Example health check:
```bash
curl http://localhost:11235/health
```
---
*(Deployment Scenarios and Complete Examples sections remain the same, maybe update links if examples moved)*
---
## Server Configuration
The server's behavior can be customized through the `config.yml` file.
### Understanding config.yml
The configuration file is loaded from `/app/config.yml` inside the container. By default, the file from `deploy/docker/config.yml` in the repository is copied there during the build.
Here's a detailed breakdown of the configuration options (using defaults from `deploy/docker/config.yml`):
```yaml
# Application Configuration
app:
title: "Crawl4AI API"
version: "1.0.0" # Consider setting this to match library version, e.g., "0.5.1"
host: "0.0.0.0"
port: 8020 # NOTE: This port is used ONLY when running server.py directly. Gunicorn overrides this (see supervisord.conf).
reload: False # Default set to False - suitable for production
timeout_keep_alive: 300
# Default LLM Configuration
llm:
provider: "openai/gpt-4o-mini"
api_key_env: "OPENAI_API_KEY"
# api_key: sk-... # If you pass the API key directly then api_key_env will be ignored
# Redis Configuration (Used by internal Redis server managed by supervisord)
redis:
host: "localhost"
port: 6379
db: 0
password: ""
# ... other redis options ...
# Rate Limiting Configuration
rate_limiting:
enabled: True
default_limit: "1000/minute"
trusted_proxies: []
storage_uri: "memory://" # Use "redis://localhost:6379" if you need persistent/shared limits
# Security Configuration
security:
enabled: false # Master toggle for security features
jwt_enabled: false # Enable JWT authentication (requires security.enabled=true)
https_redirect: false # Force HTTPS (requires security.enabled=true)
trusted_hosts: ["*"] # Allowed hosts (use specific domains in production)
headers: # Security headers (applied if security.enabled=true)
x_content_type_options: "nosniff"
x_frame_options: "DENY"
content_security_policy: "default-src 'self'"
strict_transport_security: "max-age=63072000; includeSubDomains"
# Crawler Configuration
crawler:
memory_threshold_percent: 95.0
rate_limiter:
base_delay: [1.0, 2.0] # Min/max delay between requests in seconds for dispatcher
timeouts:
stream_init: 30.0 # Timeout for stream initialization
batch_process: 300.0 # Timeout for non-streaming /crawl processing
# Logging Configuration
logging:
level: "INFO"
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
# Observability Configuration
observability:
prometheus:
enabled: True
endpoint: "/metrics"
health_check:
endpoint: "/health"
```
*(JWT Authentication section remains the same, just note the default port is now 11235 for requests)*
*(Configuration Tips and Best Practices remain the same)*
### Customizing Your Configuration
You can override the default `config.yml`.
#### Method 1: Modify Before Build
1. Edit the `deploy/docker/config.yml` file in your local repository clone.
2. Build the image using `docker buildx` or `docker compose --profile local-... up --build`. The modified file will be copied into the image.
#### Method 2: Runtime Mount (Recommended for Custom Deploys)
1. Create your custom configuration file, e.g., `my-custom-config.yml` locally. Ensure it contains all necessary sections.
2. Mount it when running the container:
* **Using `docker run`:**
```bash
# Assumes my-custom-config.yml is in the current directory
docker run -d -p 11235:11235 \
--name crawl4ai-custom-config \
--env-file .llm.env \
--shm-size=1g \
-v $(pwd)/my-custom-config.yml:/app/config.yml \
unclecode/crawl4ai:latest # Or your specific tag
```
* **Using `docker-compose.yml`:** Add a `volumes` section to the service definition:
```yaml
services:
crawl4ai-hub-amd64: # Or your chosen service
image: unclecode/crawl4ai:latest
profiles: ["hub-amd64"]
<<: *base-config
volumes:
# Mount local custom config over the default one in the container
- ./my-custom-config.yml:/app/config.yml
# Keep the shared memory volume from base-config
- /dev/shm:/dev/shm
```
*(Note: Ensure `my-custom-config.yml` is in the same directory as `docker-compose.yml`)*
> 💡 When mounting, your custom file *completely replaces* the default one. Ensure it's a valid and complete configuration.
### Configuration Recommendations
1. **Security First** 🔒
- Always enable security in production
- Use specific trusted_hosts instead of wildcards
- Set up proper rate limiting to protect your server
- Consider your environment before enabling HTTPS redirect
2. **Resource Management** 💻
- Adjust memory_threshold_percent based on available RAM
- Set timeouts according to your content size and network conditions
- Use Redis for rate limiting in multi-container setups
3. **Monitoring** 📊
- Enable Prometheus if you need metrics
- Set DEBUG logging in development, INFO in production
- Regular health check monitoring is crucial
4. **Performance Tuning**
- Start with conservative rate limiter delays
- Increase batch_process timeout for large content
- Adjust stream_init timeout based on initial response times
## Getting Help
We're here to help you succeed with Crawl4AI! Here's how to get support:
- 📖 Check our [full documentation](https://docs.crawl4ai.com)
- 🐛 Found a bug? [Open an issue](https://github.com/unclecode/crawl4ai/issues)
- 💬 Join our [Discord community](https://discord.gg/crawl4ai)
- ⭐ Star us on GitHub to show support!
## Summary
In this guide, we've covered everything you need to get started with Crawl4AI's Docker deployment:
- Building and running the Docker container
- Configuring the environment
- Making API requests with proper typing
- Using the Python SDK
- Monitoring your deployment
Remember, the examples in the `examples` folder are your friends - they show real-world usage patterns that you can adapt for your needs.
Keep exploring, and don't hesitate to reach out if you need help! We're building something amazing together. 🚀
Happy crawling! 🕷️

File diff suppressed because it is too large Load Diff

View File

@ -3,9 +3,9 @@ app:
title: "Crawl4AI API"
version: "1.0.0"
host: "0.0.0.0"
port: 8020
port: 11235
reload: False
workers: 4
workers: 1
timeout_keep_alive: 300
# Default LLM Configuration

View File

@ -1,5 +1,5 @@
fastapi==0.115.12
uvicorn==0.34.2
fastapi>=0.115.12
uvicorn>=0.34.2
gunicorn>=23.0.0
slowapi==0.1.9
prometheus-fastapi-instrumentator>=7.1.0
@ -8,8 +8,9 @@ jwt>=1.3.1
dnspython>=2.7.0
email-validator==2.2.0
sse-starlette==2.2.1
pydantic==2.11
pydantic>=2.11
rank-bm25==0.2.2
anyio==4.9.0
PyJWT==2.10.1
mcp>=1.6.0
websockets>=15.0.1

View File

@ -629,6 +629,7 @@ async def get_context(
# attach MCP layer (adds /mcp/ws, /mcp/sse, /mcp/schema)
print(f"MCP server running on {config['app']['host']}:{config['app']['port']}")
attach_mcp(
app,
base_url=f"http://{config['app']['host']}:{config['app']['port']}"

View File

@ -536,10 +536,14 @@
const endpointMap = {
crawl: '/crawl',
};
/*const endpointMap = {
crawl: '/crawl',
crawl_stream: '/crawl/stream',
md: '/md',
llm: '/llm'
};
};*/
const api = endpointMap[endpoint];
const payload = {

View File

@ -14,7 +14,7 @@ stderr_logfile=/dev/stderr ; Redirect redis stderr to container stderr
stderr_logfile_maxbytes=0
[program:gunicorn]
command=/usr/local/bin/gunicorn --bind 0.0.0.0:11235 --workers 2 --threads 2 --timeout 120 --graceful-timeout 30 --keep-alive 60 --log-level info --worker-class uvicorn.workers.UvicornWorker server:app
command=/usr/local/bin/gunicorn --bind 0.0.0.0:11235 --workers 1 --threads 4 --timeout 1800 --graceful-timeout 30 --keep-alive 300 --log-level info --worker-class uvicorn.workers.UvicornWorker server:app
directory=/app ; Working directory for the app
user=appuser ; Run gunicorn as our non-root user
autorestart=true

View File

@ -1,19 +1,11 @@
# docker-compose.yml
version: '3.8'
# Base configuration anchor for reusability
# Shared configuration for all environments
x-base-config: &base-config
ports:
# Map host port 11235 to container port 11235 (where Gunicorn will listen)
- "11235:11235"
# - "8080:8080" # Uncomment if needed
# Load API keys primarily from .llm.env file
# Create .llm.env in the root directory .llm.env.example
- "11235:11235" # Gunicorn port
env_file:
- .llm.env
# Define environment variables, allowing overrides from host environment
# Syntax ${VAR:-} uses host env var 'VAR' if set, otherwise uses value from .llm.env
- .llm.env # API keys (create from .llm.env.example)
environment:
- OPENAI_API_KEY=${OPENAI_API_KEY:-}
- DEEPSEEK_API_KEY=${DEEPSEEK_API_KEY:-}
@ -22,10 +14,8 @@ x-base-config: &base-config
- TOGETHER_API_KEY=${TOGETHER_API_KEY:-}
- MISTRAL_API_KEY=${MISTRAL_API_KEY:-}
- GEMINI_API_TOKEN=${GEMINI_API_TOKEN:-}
volumes:
# Mount /dev/shm for Chromium/Playwright performance
- /dev/shm:/dev/shm
- /dev/shm:/dev/shm # Chromium performance
deploy:
resources:
limits:
@ -34,47 +24,26 @@ x-base-config: &base-config
memory: 1G
restart: unless-stopped
healthcheck:
# IMPORTANT: Ensure Gunicorn binds to 11235 in supervisord.conf
test: ["CMD", "curl", "-f", "http://localhost:11235/health"]
interval: 30s
timeout: 10s
retries: 3
start_period: 40s # Give the server time to start
# Run the container as the non-root user defined in the Dockerfile
start_period: 40s
user: "appuser"
services:
# --- Local Build Services ---
crawl4ai-local-amd64:
crawl4ai:
# 1. Default: Pull multi-platform test image from Docker Hub
# 2. Override with local image via: IMAGE=local-test docker compose up
image: ${IMAGE:-unclecode/crawl4ai:${TAG:-latest}}
# Local build config (used with --build)
build:
context: . # Build context is the root directory
dockerfile: Dockerfile # Dockerfile is in the root directory
context: .
dockerfile: Dockerfile
args:
INSTALL_TYPE: ${INSTALL_TYPE:-default}
ENABLE_GPU: ${ENABLE_GPU:-false}
# PYTHON_VERSION arg is omitted as it's fixed by 'FROM python:3.10-slim' in Dockerfile
platform: linux/amd64
profiles: ["local-amd64"]
<<: *base-config # Inherit base configuration
crawl4ai-local-arm64:
build:
context: . # Build context is the root directory
dockerfile: Dockerfile # Dockerfile is in the root directory
args:
INSTALL_TYPE: ${INSTALL_TYPE:-default}
ENABLE_GPU: ${ENABLE_GPU:-false}
platform: linux/arm64
profiles: ["local-arm64"]
<<: *base-config
# --- Docker Hub Image Services ---
crawl4ai-hub-amd64:
image: unclecode/crawl4ai:${VERSION:-latest}-amd64
profiles: ["hub-amd64"]
<<: *base-config
crawl4ai-hub-arm64:
image: unclecode/crawl4ai:${VERSION:-latest}-arm64
profiles: ["hub-arm64"]
# Inherit shared config
<<: *base-config

View File

@ -0,0 +1,51 @@
# Crawl4AI 0.6.0
*Release date: 20250422*
0.6.0 is the **biggest jump** since the 0.5 series, packing a smarter browser core, poolbased crawlers, and a ton of DX candy. Expect faster runs, lower RAM burn, and richer diagnostics.
---
## 🚀 Key upgrades
| Area | What changed |
|------|--------------|
| **Browser** | New **Browser** management with pooling, page prewarm, geolocation + locale + timezone switches |
| **Crawler** | Console and network log capture, MHTML snapshots, safer `get_page` API |
| **Server & API** | **Crawler Pool Manager** endpoint, MCP socket + SSE support |
| **Docs** | v2 layout, floating AskAI helper, GitHub stats badge, copycode buttons, Docker API demo |
| **Tests** | Memory + load benchmarks, 90+ new cases covering MCP and Docker |
---
## ⚠ Breaking changes
1. **`get_page` signature** returns `(html, metadata)` instead of plain html.
2. **Docker** new Chromium base layer, rebuild images.
---
## How to upgrade
```bash
pip install -U crawl4ai==0.6.0
```
---
## Full changelog
The diff between `main` and `next` spans **36k insertions, 4.9k deletions** over 121 files. Read the [compare view](https://github.com/unclecode/crawl4ai/compare/0.5.0.post8...0.6.0) or see `CHANGELOG.md` for the granular list.
---
## Upgrade tips
* Using the Docker API? Pull `unclecode/crawl4ai:0.6.0`, new args are documented in `/deploy/docker/README.md`.
* Stresstest your stack with `tests/memory/run_benchmark.py` before production rollout.
* Markdown generators renamed but aliased, update when convenient, warnings will remind you.
---
Happy crawling, ping `@unclecode` on X for questions or memes.

View File

@ -8,7 +8,7 @@ dynamic = ["version"]
description = "🚀🤖 Crawl4AI: Open-source LLM Friendly Web Crawler & scraper"
readme = "README.md"
requires-python = ">=3.9"
license = {text = "MIT"}
license = {text = "Apache-2.0"}
authors = [
{name = "Unclecode", email = "unclecode@kidocode.com"}
]

View File

@ -101,19 +101,19 @@ async def test_context(s: ClientSession):
async def main() -> None:
async with websocket_client("ws://localhost:8020/mcp/ws") as (r, w):
async with websocket_client("ws://localhost:11235/mcp/ws") as (r, w):
async with ClientSession(r, w) as s:
await s.initialize() # handshake
tools = (await s.list_tools()).tools
print("tools:", [t.name for t in tools])
# await test_list()
# await test_crawl(s)
# await test_md(s)
# await test_screenshot(s)
# await test_pdf(s)
# await test_execute_js(s)
# await test_html(s)
await test_crawl(s)
await test_md(s)
await test_screenshot(s)
await test_pdf(s)
await test_execute_js(s)
await test_html(s)
await test_context(s)
anyio.run(main)