Article Title
This paragraph has a good amount of text to exceed word_count_threshold if it's set to something small. But it might not exceed a very high threshold.

Another short text. Local Link
import json import time from bs4 import BeautifulSoup from crawl4ai.content_scraping_strategy import WebScrapingStrategy, LXMLWebScrapingStrategy from typing import Dict, Any, List, Tuple import difflib from lxml import html as lhtml, etree def normalize_dom(element): """ Recursively normalizes an lxml HTML element: - Removes comment nodes - Sorts attributes on each node - Removes
if you want (optional) Returns the same element (mutated). """ # Remove comment nodes comments = element.xpath('//comment()') for c in comments: p = c.getparent() if p is not None: p.remove(c) # If you'd like to remove , or unify /, you could do so here. # For example, remove entirely: # heads = element.xpath('//head') # for h in heads: # parent = h.getparent() # if parent is not None: # parent.remove(h) # Sort attributes (to avoid false positives due to attr order) for el in element.iter(): if el.attrib: # Convert to a sorted list of (k, v), then reassign sorted_attribs = sorted(el.attrib.items()) el.attrib.clear() for k, v in sorted_attribs: el.set(k, v) return element def strip_html_body(root): """ If 'root' is , find its child and move all of 's children into a newThis paragraph has a good amount of text to exceed word_count_threshold if it's set to something small. But it might not exceed a very high threshold.
Another short text. Local Link
Promo text Ad Link
Text with mixed formatting
Unclosed paragraph
Link
"""
def load_real_samples(self):
# Load some real-world HTML samples you've collected
samples = {
'article': open('tests/samples/article.html').read(),
'product': open('tests/samples/product.html').read(),
'blog': open('tests/samples/blog.html').read()
}
return samples
def deep_compare_links(self, old_links: Dict, new_links: Dict) -> List[str]:
"""Detailed comparison of link structures"""
differences = []
for category in ['internal', 'external']:
old_urls = {link['href'] for link in old_links[category]}
new_urls = {link['href'] for link in new_links[category]}
missing = old_urls - new_urls
extra = new_urls - old_urls
if missing:
differences.append(f"Missing {category} links: {missing}")
if extra:
differences.append(f"Extra {category} links: {extra}")
# Compare link attributes for common URLs
common = old_urls & new_urls
for url in common:
old_link = next(l for l in old_links[category] if l['href'] == url)
new_link = next(l for l in new_links[category] if l['href'] == url)
for attr in ['text', 'title']:
if old_link[attr] != new_link[attr]:
differences.append(
f"Link attribute mismatch for {url} - {attr}:"
f" old='{old_link[attr]}' vs new='{new_link[attr]}'"
)
return differences
def deep_compare_media(self, old_media: Dict, new_media: Dict) -> List[str]:
"""Detailed comparison of media elements"""
differences = []
for media_type in ['images', 'videos', 'audios']:
old_srcs = {item['src'] for item in old_media[media_type]}
new_srcs = {item['src'] for item in new_media[media_type]}
missing = old_srcs - new_srcs
extra = new_srcs - old_srcs
if missing:
differences.append(f"Missing {media_type}: {missing}")
if extra:
differences.append(f"Extra {media_type}: {extra}")
# Compare media attributes for common sources
common = old_srcs & new_srcs
for src in common:
old_item = next(m for m in old_media[media_type] if m['src'] == src)
new_item = next(m for m in new_media[media_type] if m['src'] == src)
for attr in ['alt', 'description']:
if old_item.get(attr) != new_item.get(attr):
differences.append(
f"{media_type} attribute mismatch for {src} - {attr}:"
f" old='{old_item.get(attr)}' vs new='{new_item.get(attr)}'"
)
return differences
def compare_html_content(self, old_html: str, new_html: str) -> List[str]:
"""Compare HTML content structure and text"""
# return compare_html_structurally(old_html, new_html)
differences = []
def normalize_html(html: str) -> Tuple[str, str]:
soup = BeautifulSoup(html, 'lxml')
# Get both structure and text
structure = ' '.join(tag.name for tag in soup.find_all())
text = ' '.join(soup.get_text().split())
return structure, text
old_structure, old_text = normalize_html(old_html)
new_structure, new_text = normalize_html(new_html)
# Compare structure
if abs(len(old_structure) - len(new_structure)) > 100:
# if old_structure != new_structure:
diff = difflib.unified_diff(
old_structure.split(),
new_structure.split(),
lineterm=''
)
differences.append("HTML structure differences:\n" + '\n'.join(diff))
# Compare text content
if abs(len(old_text) - len(new_text)) > 100:
# if old_text != new_text:
# Show detailed text differences
text_diff = difflib.unified_diff(
old_text.split(),
new_text.split(),
lineterm=''
)
differences.append("Text content differences:\n" + '\n'.join(text_diff))
return differences
def compare_results(self, old_result: Dict, new_result: Dict) -> Dict[str, List[str]]:
"""Comprehensive comparison of scraper outputs"""
differences = {}
# Compare links
link_differences = self.deep_compare_links(old_result['links'], new_result['links'])
if link_differences:
differences['links'] = link_differences
# Compare media
media_differences = self.deep_compare_media(old_result['media'], new_result['media'])
if media_differences:
differences['media'] = media_differences
# Compare HTML
html_differences = self.compare_html_content(
old_result['cleaned_html'],
new_result['cleaned_html']
)
if html_differences:
differences['html'] = html_differences
return differences
def run_tests(self) -> Dict:
"""Run comparison tests using the complicated HTML with multiple parameter scenarios."""
# We'll still keep some "test_cases" logic from above (basic, complex, malformed).
# But we add a new section for the complicated HTML scenarios.
results = {
'tests': [],
'summary': {'passed': 0, 'failed': 0}
}
# 1) First, run the existing 3 built-in test cases (basic, complex, malformed).
# for case_name, html in self.test_cases.items():
# print(f"\nTesting built-in case: {case_name}...")
# original = WebScrapingStrategy()
# lxml = LXMLWebScrapingStrategy()
# start = time.time()
# orig_result = original.scrap("http://test.com", html)
# orig_time = time.time() - start
# print("\nOriginal Mode:")
# print(f"Cleaned HTML size: {len(orig_result['cleaned_html'])/1024:.2f} KB")
# print(f"Images: {len(orig_result['media']['images'])}")
# print(f"External links: {len(orig_result['links']['external'])}")
# print(f"Times - Original: {orig_time:.3f}s")
# start = time.time()
# lxml_result = lxml.scrap("http://test.com", html)
# lxml_time = time.time() - start
# print("\nLXML Mode:")
# print(f"Cleaned HTML size: {len(lxml_result['cleaned_html'])/1024:.2f} KB")
# print(f"Images: {len(lxml_result['media']['images'])}")
# print(f"External links: {len(lxml_result['links']['external'])}")
# print(f"Times - LXML: {lxml_time:.3f}s")
# # Compare
# diffs = {}
# link_diff = self.deep_compare_links(orig_result['links'], lxml_result['links'])
# if link_diff:
# diffs['links'] = link_diff
# media_diff = self.deep_compare_media(orig_result['media'], lxml_result['media'])
# if media_diff:
# diffs['media'] = media_diff
# html_diff = self.compare_html_content(orig_result['cleaned_html'], lxml_result['cleaned_html'])
# if html_diff:
# diffs['html'] = html_diff
# test_result = {
# 'case': case_name,
# 'lxml_mode': {
# 'differences': diffs,
# 'execution_time': lxml_time
# },
# 'original_time': orig_time
# }
# results['tests'].append(test_result)
# if not diffs:
# results['summary']['passed'] += 1
# else:
# results['summary']['failed'] += 1
# 2) Now, run the complicated HTML with multiple parameter scenarios.
complicated_html = generate_complicated_html()
print("\n=== Testing complicated HTML with multiple parameter scenarios ===")
# Create the scrapers once (or you can re-create if needed)
original = WebScrapingStrategy()
lxml = LXMLWebScrapingStrategy()
for scenario_name, params in get_test_scenarios().items():
print(f"\nScenario: {scenario_name}")
start = time.time()
orig_result = original.scrap("http://test.com", complicated_html, **params)
orig_time = time.time() - start
start = time.time()
lxml_result = lxml.scrap("http://test.com", complicated_html, **params)
lxml_time = time.time() - start
diffs = {}
link_diff = self.deep_compare_links(orig_result['links'], lxml_result['links'])
if link_diff:
diffs['links'] = link_diff
media_diff = self.deep_compare_media(orig_result['media'], lxml_result['media'])
if media_diff:
diffs['media'] = media_diff
html_diff = self.compare_html_content(orig_result['cleaned_html'], lxml_result['cleaned_html'])
if html_diff:
diffs['html'] = html_diff
test_result = {
'case': f"complicated_{scenario_name}",
'lxml_mode': {
'differences': diffs,
'execution_time': lxml_time
},
'original_time': orig_time
}
results['tests'].append(test_result)
if not diffs:
results['summary']['passed'] += 1
print(f"✅ [OK] No differences found. Time(Orig: {orig_time:.3f}s, LXML: {lxml_time:.3f}s)")
else:
results['summary']['failed'] += 1
print("❌ Differences found:")
for category, dlist in diffs.items():
print(f" {category}:")
for d in dlist:
print(f" - {d}")
return results
def print_report(self, results: Dict):
"""Generate detailed equivalence report"""
print("\n=== Scraper Equivalence Test Report ===\n")
print(f"Total Cases: {len(results['tests'])}")
print(f"Passed: {results['summary']['passed']}")
print(f"Failed: {results['summary']['failed']}")
for test in results['tests']:
print(f"\nTest Case: {test['case']}")
if not test['lxml_mode']['differences']:
print("✅ All implementations produced identical results")
print(f"Times - Original: {test['original_time']:.3f}s, "
f"LXML: {test['lxml_mode']['execution_time']:.3f}s")
else:
print("❌ Differences found:")
if test['lxml_mode']['differences']:
print("\nLXML Mode Differences:")
for category, diffs in test['lxml_mode']['differences'].items():
print(f"\n{category}:")
for diff in diffs:
print(f" - {diff}")
def main():
tester = ScraperEquivalenceTester()
results = tester.run_tests()
tester.print_report(results)
# Save detailed results for debugging
with open('scraper_equivalence_results.json', 'w') as f:
json.dump(results, f, indent=2)
if __name__ == "__main__":
main()