crawl4ai/docs/examples/quickstart_async.config.py
UncleCode 0982c639ae Enhance AsyncWebCrawler and related configurations
- Introduced new configuration classes: BrowserConfig and CrawlerRunConfig.
  - Refactored AsyncWebCrawler to leverage the new configuration system for cleaner parameter management.
  - Updated AsyncPlaywrightCrawlerStrategy for better flexibility and reduced legacy parameters.
  - Improved error handling with detailed context extraction during exceptions.
  - Enhanced overall maintainability and usability of the web crawler.
2024-12-12 19:35:09 +08:00

517 lines
17 KiB
Python

import os, sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
os.environ['FIRECRAWL_API_KEY'] = "fc-84b370ccfad44beabc686b38f1769692"
import asyncio
import time
import json
import re
from typing import Dict, List
from bs4 import BeautifulSoup
from pydantic import BaseModel, Field
from crawl4ai import AsyncWebCrawler, CacheMode, BrowserConfig, CrawlerRunConfig
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
from crawl4ai.content_filter_strategy import BM25ContentFilter, PruningContentFilter
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy, LLMExtractionStrategy
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
print("Crawl4AI: Advanced Web Crawling and Data Extraction")
print("GitHub Repository: https://github.com/unclecode/crawl4ai")
print("Twitter: @unclecode")
print("Website: https://crawl4ai.com")
# Basic Example - Simple Crawl
async def simple_crawl():
print("\n--- Basic Usage ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
print(result.markdown[:500])
# JavaScript Execution Example
async def simple_example_with_running_js_code():
print("\n--- Executing JavaScript and Using CSS Selectors ---")
browser_config = BrowserConfig(
headless=True,
java_script_enabled=True
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
js_code=["const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"],
# wait_for="() => { return Array.from(document.querySelectorAll('article.tease-card')).length > 10; }"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
print(result.markdown[:500])
# CSS Selector Example
async def simple_example_with_css_selector():
print("\n--- Using CSS Selectors ---")
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector=".wide-tease-item__description"
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
print(result.markdown[:500])
# Proxy Example
async def use_proxy():
print("\n--- Using a Proxy ---")
browser_config = BrowserConfig(
headless=True,
proxy="http://your-proxy-url:port"
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=crawler_config
)
if result.success:
print(result.markdown[:500])
# Screenshot Example
async def capture_and_save_screenshot(url: str, output_path: str):
browser_config = BrowserConfig(headless=True)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
screenshot=True
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url=url,
config=crawler_config
)
if result.success and result.screenshot:
import base64
screenshot_data = base64.b64decode(result.screenshot)
with open(output_path, 'wb') as f:
f.write(screenshot_data)
print(f"Screenshot saved successfully to {output_path}")
else:
print("Failed to capture screenshot")
# LLM Extraction Example
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(..., description="Fee for output token for the OpenAI model.")
async def extract_structured_data_using_llm(provider: str, api_token: str = None, extra_headers: Dict[str, str] = None):
print(f"\n--- Extracting Structured Data with {provider} ---")
if api_token is None and provider != "ollama":
print(f"API token is required for {provider}. Skipping this example.")
return
browser_config = BrowserConfig(headless=True)
extra_args = {
"temperature": 0,
"top_p": 0.9,
"max_tokens": 2000
}
if extra_headers:
extra_args["extra_headers"] = extra_headers
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
provider=provider,
api_token=api_token,
schema=OpenAIModelFee.model_json_schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content.""",
extra_args=extra_args
)
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://openai.com/api/pricing/",
config=crawler_config
)
print(result.extracted_content)
# CSS Extraction Example
async def extract_structured_data_using_css_extractor():
print("\n--- Using JsonCssExtractionStrategy for Fast Structured Output ---")
schema = {
"name": "KidoCode Courses",
"baseSelector": "section.charge-methodology .w-tab-content > div",
"fields": [
{
"name": "section_title",
"selector": "h3.heading-50",
"type": "text",
},
{
"name": "section_description",
"selector": ".charge-content",
"type": "text",
},
{
"name": "course_name",
"selector": ".text-block-93",
"type": "text",
},
{
"name": "course_description",
"selector": ".course-content-text",
"type": "text",
},
{
"name": "course_icon",
"selector": ".image-92",
"type": "attribute",
"attribute": "src"
}
]
}
browser_config = BrowserConfig(
headless=True,
java_script_enabled=True
)
js_click_tabs = """
(async () => {
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
for(let tab of tabs) {
tab.scrollIntoView();
tab.click();
await new Promise(r => setTimeout(r, 500));
}
})();
"""
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
extraction_strategy=JsonCssExtractionStrategy(schema),
js_code=[js_click_tabs]
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="https://www.kidocode.com/degrees/technology",
config=crawler_config
)
companies = json.loads(result.extracted_content)
print(f"Successfully extracted {len(companies)} companies")
print(json.dumps(companies[0], indent=2))
# Dynamic Content Examples - Method 1
async def crawl_dynamic_content_pages_method_1():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
first_commit = ""
async def on_execution_started(page, **kwargs):
nonlocal first_commit
try:
while True:
await page.wait_for_selector("li.Box-sc-g0xbh4-0 h4")
commit = await page.query_selector("li.Box-sc-g0xbh4-0 h4")
commit = await commit.evaluate("(element) => element.textContent")
commit = re.sub(r"\s+", "", commit)
if commit and commit != first_commit:
first_commit = commit
break
await asyncio.sleep(0.5)
except Exception as e:
print(f"Warning: New content didn't appear after JavaScript execution: {e}")
browser_config = BrowserConfig(
headless=False,
java_script_enabled=True
)
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler.crawler_strategy.set_hook("on_execution_started", on_execution_started)
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
js_next_page = """
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
"""
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
js_code=js_next_page if page > 0 else None,
js_only=page > 0,
session_id=session_id
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
soup = BeautifulSoup(result.cleaned_html, "html.parser")
commits = soup.select("li")
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
# Dynamic Content Examples - Method 2
async def crawl_dynamic_content_pages_method_2():
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
browser_config = BrowserConfig(
headless=False,
java_script_enabled=True
)
js_next_page_and_wait = """
(async () => {
const getCurrentCommit = () => {
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
return commits.length > 0 ? commits[0].textContent.trim() : null;
};
const initialCommit = getCurrentCommit();
const button = document.querySelector('a[data-testid="pagination-next-button"]');
if (button) button.click();
while (true) {
await new Promise(resolve => setTimeout(resolve, 100));
const newCommit = getCurrentCommit();
if (newCommit && newCommit !== initialCommit) {
break;
}
}
})();
"""
schema = {
"name": "Commit Extractor",
"baseSelector": "li.Box-sc-g0xbh4-0",
"fields": [
{
"name": "title",
"selector": "h4.markdown-title",
"type": "text",
"transform": "strip",
},
],
}
async with AsyncWebCrawler(config=browser_config) as crawler:
url = "https://github.com/microsoft/TypeScript/commits/main"
session_id = "typescript_commits_session"
all_commits = []
extraction_strategy = JsonCssExtractionStrategy(schema)
for page in range(3):
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
css_selector="li.Box-sc-g0xbh4-0",
extraction_strategy=extraction_strategy,
js_code=js_next_page_and_wait if page > 0 else None,
js_only=page > 0,
session_id=session_id
)
result = await crawler.arun(url=url, config=crawler_config)
assert result.success, f"Failed to crawl page {page + 1}"
commits = json.loads(result.extracted_content)
all_commits.extend(commits)
print(f"Page {page + 1}: Found {len(commits)} commits")
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
# Browser Comparison
async def crawl_custom_browser_type():
print("\n--- Browser Comparison ---")
# Firefox
browser_config_firefox = BrowserConfig(
browser_type="firefox",
headless=True
)
start = time.time()
async with AsyncWebCrawler(config=browser_config_firefox) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
)
print("Firefox:", time.time() - start)
print(result.markdown[:500])
# WebKit
browser_config_webkit = BrowserConfig(
browser_type="webkit",
headless=True
)
start = time.time()
async with AsyncWebCrawler(config=browser_config_webkit) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
)
print("WebKit:", time.time() - start)
print(result.markdown[:500])
# Chromium (default)
browser_config_chromium = BrowserConfig(
browser_type="chromium",
headless=True
)
start = time.time()
async with AsyncWebCrawler(config=browser_config_chromium) as crawler:
result = await crawler.arun(
url="https://www.example.com",
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
)
print("Chromium:", time.time() - start)
print(result.markdown[:500])
# Anti-Bot and User Simulation
async def crawl_with_user_simulation():
browser_config = BrowserConfig(
headless=True,
user_agent_mode="random",
user_agent_generator_config={
"device_type": "mobile",
"os_type": "android"
}
)
crawler_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
magic=True,
simulate_user=True,
override_navigator=True
)
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun(
url="YOUR-URL-HERE",
config=crawler_config
)
print(result.markdown)
# Speed Comparison
async def speed_comparison():
print("\n--- Speed Comparison ---")
# Firecrawl comparison
from firecrawl import FirecrawlApp
app = FirecrawlApp(api_key=os.environ['FIRECRAWL_API_KEY'])
start = time.time()
scrape_status = app.scrape_url(
'https://www.nbcnews.com/business',
params={'formats': ['markdown', 'html']}
)
end = time.time()
print("Firecrawl:")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(scrape_status['markdown'])} characters")
print(f"Images found: {scrape_status['markdown'].count('cldnry.s-nbcnews.com')}")
print()
# Crawl4AI comparisons
browser_config = BrowserConfig(headless=True)
# Simple crawl
async with AsyncWebCrawler(config=browser_config) as crawler:
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=0
)
)
end = time.time()
print("Crawl4AI (simple crawl):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Advanced filtering
start = time.time()
result = await crawler.arun(
url="https://www.nbcnews.com/business",
config=CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
word_count_threshold=0,
markdown_generator=DefaultMarkdownGenerator(
content_filter=PruningContentFilter(
threshold=0.48,
threshold_type="fixed",
min_word_threshold=0
)
)
)
)
end = time.time()
print("Crawl4AI (Markdown Plus):")
print(f"Time taken: {end - start:.2f} seconds")
print(f"Content length: {len(result.markdown_v2.raw_markdown)} characters")
print(f"Fit Markdown: {len(result.markdown_v2.fit_markdown)} characters")
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
print()
# Main execution
async def main():
# Basic examples
# await simple_crawl()
# await simple_example_with_running_js_code()
# await simple_example_with_css_selector()
# Advanced examples
# await extract_structured_data_using_css_extractor()
# await extract_structured_data_using_llm("openai/gpt-4o", os.getenv("OPENAI_API_KEY"))
# await crawl_dynamic_content_pages_method_1()
# await crawl_dynamic_content_pages_method_2()
# Browser comparisons
await crawl_custom_browser_type()
# Performance testing
# await speed_comparison()
# Screenshot example
await capture_and_save_screenshot(
"https://www.example.com",
os.path.join(__location__, "tmp/example_screenshot.jpg")
)
if __name__ == "__main__":
asyncio.run(main())