crawl4ai/docs/md_v3/tutorials/getting-warmer.md

528 lines
18 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Crawl4AI Quick Start Guide: Your All-in-One AI-Ready Web Crawling & AI Integration Solution
Crawl4AI, the **#1 trending GitHub repository**, streamlines web content extraction into AI-ready formats. Perfect for AI assistants, semantic search engines, or data pipelines, Crawl4AI transforms raw HTML into structured Markdown or JSON effortlessly. Integrate with LLMs, open-source models, or your own retrieval-augmented generation workflows.
**What Crawl4AI is not:**
Crawl4AI is not a replacement for traditional web scraping libraries, Selenium, or Playwright. It's not designed as a general-purpose web automation tool. Instead, Crawl4AI has a specific, focused goal:
- To generate perfect, AI-friendly data (particularly for LLMs) from web content
- To maximize speed and efficiency in data extraction and processing
- To operate at scale, from Raspberry Pi to cloud infrastructures
Crawl4AI is engineered with a "scale-first" mindset, aiming to handle millions of links while maintaining exceptional performance. It's super efficient and fast, optimized to:
1. Transform raw web content into structured, LLM-ready formats (Markdown/JSON)
2. Implement intelligent extraction strategies to reduce reliance on costly API calls
3. Provide a streamlined pipeline for AI data preparation and ingestion
In essence, Crawl4AI bridges the gap between web content and AI systems, focusing on delivering high-quality, processed data rather than offering broad web automation capabilities.
**Key Links:**
- **Website:** [https://crawl4ai.com](https://crawl4ai.com)
- **GitHub:** [https://github.com/unclecode/crawl4ai](https://github.com/unclecode/crawl4ai)
- **Colab Notebook:** [Try on Google Colab](https://colab.research.google.com/drive/1SgRPrByQLzjRfwoRNq1wSGE9nYY_EE8C?usp=sharing)
- **Quickstart Code Example:** [quickstart_async.config.py](https://github.com/unclecode/crawl4ai/blob/main/docs/examples/quickstart_async.config.py)
- **Examples Folder:** [Crawl4AI Examples](https://github.com/unclecode/crawl4ai/tree/main/docs/examples)
---
## Table of Contents
- [Crawl4AI Quick Start Guide: Your All-in-One AI-Ready Web Crawling \& AI Integration Solution](#crawl4ai-quick-start-guide-your-all-in-one-ai-ready-web-crawling--ai-integration-solution)
- [Table of Contents](#table-of-contents)
- [1. Introduction \& Key Concepts](#1-introduction--key-concepts)
- [2. Installation \& Environment Setup](#2-installation--environment-setup)
- [Test Your Installation](#test-your-installation)
- [3. Core Concepts \& Configuration](#3-core-concepts--configuration)
- [4. Basic Crawling \& Simple Extraction](#4-basic-crawling--simple-extraction)
- [5. Markdown Generation \& AI-Optimized Output](#5-markdown-generation--ai-optimized-output)
- [6. Structured Data Extraction (CSS, XPath, LLM)](#6-structured-data-extraction-css-xpath-llm)
- [7. Advanced Extraction: LLM \& Open-Source Models](#7-advanced-extraction-llm--open-source-models)
- [8. Page Interactions, JS Execution, \& Dynamic Content](#8-page-interactions-js-execution--dynamic-content)
- [9. Media, Links, \& Metadata Handling](#9-media-links--metadata-handling)
- [10. Authentication \& Identity Preservation](#10-authentication--identity-preservation)
- [Manual Setup via User Data Directory](#manual-setup-via-user-data-directory)
- [Using `storage_state`](#using-storage_state)
- [11. Proxy \& Security Enhancements](#11-proxy--security-enhancements)
- [12. Screenshots, PDFs \& File Downloads](#12-screenshots-pdfs--file-downloads)
- [13. Caching \& Performance Optimization](#13-caching--performance-optimization)
- [14. Hooks for Custom Logic](#14-hooks-for-custom-logic)
- [15. Dockerization \& Scaling](#15-dockerization--scaling)
- [16. Troubleshooting \& Common Pitfalls](#16-troubleshooting--common-pitfalls)
- [17. Comprehensive End-to-End Example](#17-comprehensive-end-to-end-example)
- [18. Further Resources \& Community](#18-further-resources--community)
---
## 1. Introduction & Key Concepts
Crawl4AI transforms websites into structured, AI-friendly data. It efficiently handles large-scale crawling, integrates with both proprietary and open-source LLMs, and optimizes content for semantic search or RAG pipelines.
**Quick Test:**
```python
import asyncio
from crawl4ai import AsyncWebCrawler
async def test_run():
async with AsyncWebCrawler() as crawler:
result = await crawler.arun("https://example.com")
print(result.markdown)
asyncio.run(test_run())
```
If you see Markdown output, everything is working!
**More info:** [See /docs/introduction](#) or [1_introduction.ex.md](https://github.com/unclecode/crawl4ai/blob/main/introduction.ex.md)
---
## 2. Installation & Environment Setup
```bash
# Install the package
pip install crawl4ai
crawl4ai-setup
# Install Playwright with system dependencies (recommended)
playwright install --with-deps # Installs all browsers
# Or install specific browsers:
playwright install --with-deps chrome # Recommended for Colab/Linux
playwright install --with-deps firefox
playwright install --with-deps webkit
playwright install --with-deps chromium
# Keep Playwright updated periodically
playwright install
```
> **Note**: For Google Colab and some Linux environments, use `chrome` instead of `chromium` - it tends to work more reliably.
### Test Your Installation
Try these one-liners:
```python
# Visible browser test
python -c "from playwright.sync_api import sync_playwright; p = sync_playwright().start(); browser = p.chromium.launch(headless=False); page = browser.new_page(); page.goto('https://example.com'); input('Press Enter to close...')"
# Headless test (for servers/CI)
python -c "from playwright.sync_api import sync_playwright; p = sync_playwright().start(); browser = p.chromium.launch(headless=True); page = browser.new_page(); page.goto('https://example.com'); print(f'Title: {page.title()}'); browser.close()"
```
You should see a browser window (in visible test) loading example.com. If you get errors, try with Firefox using `playwright install --with-deps firefox`.
**Try in Colab:**
[Open Colab Notebook](https://colab.research.google.com/drive/1SgRPrByQLzjRfwoRNq1wSGE9nYY_EE8C?usp=sharing)
**More info:** [See /docs/configuration](#) or [2_configuration.md](https://github.com/unclecode/crawl4ai/blob/main/configuration.md)
---
## 3. Core Concepts & Configuration
Use `AsyncWebCrawler`, `CrawlerRunConfig`, and `BrowserConfig` to control crawling.
**Example config:**
```python
from crawl4ai.async_configs import BrowserConfig, CrawlerRunConfig
browser_config = BrowserConfig(
headless=True,
verbose=True,
viewport_width=1080,
viewport_height=600,
text_mode=False,
ignore_https_errors=True,
java_script_enabled=True
)
run_config = CrawlerRunConfig(
css_selector="article.main",
word_count_threshold=50,
excluded_tags=['nav','footer'],
exclude_external_links=True,
wait_for="css:.article-loaded",
page_timeout=60000,
delay_before_return_html=1.0,
mean_delay=0.1,
max_range=0.3,
process_iframes=True,
remove_overlay_elements=True,
js_code="""
(async () => {
window.scrollTo(0, document.body.scrollHeight);
await new Promise(r => setTimeout(r, 2000));
document.querySelector('.load-more')?.click();
})();
"""
)
# Use: ENABLED, DISABLED, BYPASS, READ_ONLY, WRITE_ONLY
# run_config.cache_mode = CacheMode.ENABLED
```
**Prefixes:**
- `http://` or `https://` for live pages
- `file://local.html` for local
- `raw:<html>` for raw HTML strings
**More info:** [See /docs/async_webcrawler](#) or [3_async_webcrawler.ex.md](https://github.com/unclecode/crawl4ai/blob/main/async_webcrawler.ex.md)
---
## 4. Basic Crawling & Simple Extraction
```python
async with AsyncWebCrawler(config=browser_config) as crawler:
result = await crawler.arun("https://news.example.com/article", config=run_config)
print(result.markdown) # Basic markdown content
```
**More info:** [See /docs/browser_context_page](#) or [4_browser_context_page.ex.md](https://github.com/unclecode/crawl4ai/blob/main/browser_context_page.ex.md)
---
## 5. Markdown Generation & AI-Optimized Output
After crawling, `result.markdown_v2` provides:
- `raw_markdown`: Unfiltered markdown
- `markdown_with_citations`: Links as references at the bottom
- `references_markdown`: A separate list of reference links
- `fit_markdown`: Filtered, relevant markdown (e.g., after BM25)
- `fit_html`: The HTML used to produce `fit_markdown`
**Example:**
```python
print("RAW:", result.markdown_v2.raw_markdown[:200])
print("CITED:", result.markdown_v2.markdown_with_citations[:200])
print("REFERENCES:", result.markdown_v2.references_markdown)
print("FIT MARKDOWN:", result.markdown_v2.fit_markdown)
```
For AI training, `fit_markdown` focuses on the most relevant content.
**More info:** [See /docs/markdown_generation](#) or [5_markdown_generation.ex.md](https://github.com/unclecode/crawl4ai/blob/main/markdown_generation.ex.md)
---
## 6. Structured Data Extraction (CSS, XPath, LLM)
Extract JSON data without LLMs:
**CSS:**
```python
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
schema = {
"name": "Products",
"baseSelector": ".product",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "price", "selector": ".price", "type": "text"}
]
}
run_config.extraction_strategy = JsonCssExtractionStrategy(schema)
```
**XPath:**
```python
from crawl4ai.extraction_strategy import JsonXPathExtractionStrategy
xpath_schema = {
"name": "Articles",
"baseSelector": "//div[@class='article']",
"fields": [
{"name":"headline","selector":".//h1","type":"text"},
{"name":"summary","selector":".//p[@class='summary']","type":"text"}
]
}
run_config.extraction_strategy = JsonXPathExtractionStrategy(xpath_schema)
```
**More info:** [See /docs/extraction_strategies](#) or [7_extraction_strategies.ex.md](https://github.com/unclecode/crawl4ai/blob/main/extraction_strategies.ex.md)
---
## 7. Advanced Extraction: LLM & Open-Source Models
Use LLMExtractionStrategy for complex tasks. Works with OpenAI or open-source models (e.g., Ollama).
```python
from pydantic import BaseModel
from crawl4ai.extraction_strategy import LLMExtractionStrategy
class TravelData(BaseModel):
destination: str
attractions: list
run_config.extraction_strategy = LLMExtractionStrategy(
provider="ollama/nemotron",
schema=TravelData.schema(),
instruction="Extract destination and top attractions."
)
```
**More info:** [See /docs/extraction_strategies](#) or [7_extraction_strategies.ex.md](https://github.com/unclecode/crawl4ai/blob/main/extraction_strategies.ex.md)
---
## 8. Page Interactions, JS Execution, & Dynamic Content
Insert `js_code` and use `wait_for` to ensure content loads. Example:
```python
run_config.js_code = """
(async () => {
document.querySelector('.load-more')?.click();
await new Promise(r => setTimeout(r, 2000));
})();
"""
run_config.wait_for = "css:.item-loaded"
```
**More info:** [See /docs/page_interaction](#) or [11_page_interaction.md](https://github.com/unclecode/crawl4ai/blob/main/page_interaction.md)
---
## 9. Media, Links, & Metadata Handling
`result.media["images"]`: List of images with `src`, `score`, `alt`. Score indicates relevance.
`result.media["videos"]`, `result.media["audios"]` similarly hold media info.
`result.links["internal"]`, `result.links["external"]`, `result.links["social"]`: Categorized links. Each link has `href`, `text`, `context`, `type`.
`result.metadata`: Title, description, keywords, author.
**Example:**
```python
# Images
for img in result.media["images"]:
print("Image:", img["src"], "Score:", img["score"], "Alt:", img.get("alt","N/A"))
# Links
for link in result.links["external"]:
print("External Link:", link["href"], "Text:", link["text"])
# Metadata
print("Page Title:", result.metadata["title"])
print("Description:", result.metadata["description"])
```
**More info:** [See /docs/content_selection](#) or [8_content_selection.ex.md](https://github.com/unclecode/crawl4ai/blob/main/content_selection.ex.md)
---
## 10. Authentication & Identity Preservation
### Manual Setup via User Data Directory
1. **Open Chrome with a custom user data dir:**
```bash
"C:\Program Files\Google\Chrome\Application\chrome.exe" --user-data-dir="C:\MyChromeProfile"
```
On macOS:
```bash
"/Applications/Google Chrome.app/Contents/MacOS/Google Chrome" --user-data-dir="/Users/username/ChromeProfiles/MyProfile"
```
2. **Log in to sites, solve CAPTCHAs, adjust settings manually.**
The browser saves cookies/localStorage in that directory.
3. **Use `user_data_dir` in `BrowserConfig`:**
```python
browser_config = BrowserConfig(
headless=True,
user_data_dir="/Users/username/ChromeProfiles/MyProfile"
)
```
Now the crawler starts with those cookies, sessions, etc.
### Using `storage_state`
Alternatively, export and reuse storage states:
```python
browser_config = BrowserConfig(
headless=True,
storage_state="mystate.json" # Pre-saved state
)
```
No repeated logins needed.
**More info:** [See /docs/storage_state](#) or [16_storage_state.md](https://github.com/unclecode/crawl4ai/blob/main/storage_state.md)
---
## 11. Proxy & Security Enhancements
Use `proxy_config` for authenticated proxies:
```python
browser_config.proxy_config = {
"server": "http://proxy.example.com:8080",
"username": "proxyuser",
"password": "proxypass"
}
```
Combine with `headers` or `ignore_https_errors` as needed.
**More info:** [See /docs/proxy_security](#) or [14_proxy_security.md](https://github.com/unclecode/crawl4ai/blob/main/proxy_security.md)
---
## 12. Screenshots, PDFs & File Downloads
Enable `screenshot=True` or `pdf=True` in `CrawlerRunConfig`:
```python
run_config.screenshot = True
run_config.pdf = True
```
After crawling:
```python
if result.screenshot:
with open("page.png", "wb") as f:
f.write(result.screenshot)
if result.pdf:
with open("page.pdf", "wb") as f:
f.write(result.pdf)
```
**File Downloads:**
```python
browser_config.accept_downloads = True
browser_config.downloads_path = "./downloads"
run_config.js_code = """document.querySelector('a.download')?.click();"""
# After crawl:
print("Downloaded files:", result.downloaded_files)
```
**More info:** [See /docs/screenshot_and_pdf_export](#) or [15_screenshot_and_pdf_export.md](https://github.com/unclecode/crawl4ai/blob/main/screenshot_and_pdf_export.md)
Also [10_file_download.md](https://github.com/unclecode/crawl4ai/blob/main/file_download.md)
---
## 13. Caching & Performance Optimization
Set `cache_mode` to reuse fetch results:
```python
from crawl4ai import CacheMode
run_config.cache_mode = CacheMode.ENABLED
```
Adjust delays, increase concurrency, or use `text_mode=True` for faster extraction.
**More info:** [See /docs/cache_modes](#) or [9_cache_modes.md](https://github.com/unclecode/crawl4ai/blob/main/cache_modes.md)
---
## 14. Hooks for Custom Logic
Hooks let you run code at specific lifecycle events without creating pages manually in `on_browser_created`.
Use `on_page_context_created` to apply routing or modify page contexts before crawling the URL:
**Example Hook:**
```python
async def on_page_context_created_hook(context, page, **kwargs):
# Block all images to speed up load
await context.route("**/*.{png,jpg,jpeg}", lambda route: route.abort())
print("[HOOK] Image requests blocked")
async with AsyncWebCrawler(config=browser_config) as crawler:
crawler.crawler_strategy.set_hook("on_page_context_created", on_page_context_created_hook)
result = await crawler.arun("https://imageheavy.example.com", config=run_config)
print("Crawl finished with images blocked.")
```
This hook is clean and doesnt create a separate page itself—it just modifies the current context/page setup.
**More info:** [See /docs/hooks_auth](#) or [13_hooks_auth.md](https://github.com/unclecode/crawl4ai/blob/main/hooks_auth.md)
---
## 15. Dockerization & Scaling
Use Docker images:
- AMD64 basic:
```bash
docker pull unclecode/crawl4ai:basic-amd64
docker run -p 11235:11235 unclecode/crawl4ai:basic-amd64
```
- ARM64 for M1/M2:
```bash
docker pull unclecode/crawl4ai:basic-arm64
docker run -p 11235:11235 unclecode/crawl4ai:basic-arm64
```
- GPU support:
```bash
docker pull unclecode/crawl4ai:gpu-amd64
docker run --gpus all -p 11235:11235 unclecode/crawl4ai:gpu-amd64
```
Scale with load balancers or Kubernetes.
**More info:** [See /docs/proxy_security (for proxy) or relevant Docker instructions in README](#)
---
## 16. Troubleshooting & Common Pitfalls
- Empty results? Relax filters, check selectors.
- Timeouts? Increase `page_timeout` or refine `wait_for`.
- CAPTCHAs? Use `user_data_dir` or `storage_state` after manual solving.
- JS errors? Try headful mode for debugging.
Check [examples](https://github.com/unclecode/crawl4ai/tree/main/docs/examples) & [quickstart_async.config.py](https://github.com/unclecode/crawl4ai/blob/main/docs/examples/quickstart_async.config.py) for more code.
---
## 17. Comprehensive End-to-End Example
Combine hooks, JS execution, PDF saving, LLM extraction—see [quickstart_async.config.py](https://github.com/unclecode/crawl4ai/blob/main/docs/examples/quickstart_async.config.py) for a full example.
---
## 18. Further Resources & Community
- **Docs:** [https://crawl4ai.com](https://crawl4ai.com)
- **Issues & PRs:** [https://github.com/unclecode/crawl4ai/issues](https://github.com/unclecode/crawl4ai/issues)
Follow [@unclecode](https://x.com/unclecode) for news & community updates.
**Happy Crawling!**
Leverage Crawl4AI to feed your AI models with clean, structured web data today.