crawl4ai/docs/examples/quickstart.ipynb

443 lines
16 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Crawl4AI: Advanced Web Crawling and Data Extraction\n",
"\n",
"Welcome to this interactive notebook showcasing Crawl4AI, an advanced asynchronous web crawling and data extraction library.\n",
"\n",
"- GitHub Repository: [https://github.com/unclecode/crawl4ai](https://github.com/unclecode/crawl4ai)\n",
"- Twitter: [@unclecode](https://twitter.com/unclecode)\n",
"- Website: [https://crawl4ai.com](https://crawl4ai.com)\n",
"\n",
"Let's explore the powerful features of Crawl4AI!"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation\n",
"\n",
"First, let's install Crawl4AI from GitHub:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install \"crawl4ai @ git+https://github.com/unclecode/crawl4ai.git\"\n",
"!pip install nest-asyncio\n",
"!playwright install"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, let's import the necessary libraries:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import asyncio\n",
"import nest_asyncio\n",
"from crawl4ai import AsyncWebCrawler\n",
"from crawl4ai.extraction_strategy import JsonCssExtractionStrategy, LLMExtractionStrategy\n",
"import json\n",
"import time\n",
"from pydantic import BaseModel, Field\n",
"\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic Usage\n",
"\n",
"Let's start with a simple crawl example:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async def simple_crawl():\n",
" async with AsyncWebCrawler(verbose=True) as crawler:\n",
" result = await crawler.arun(url=\"https://www.nbcnews.com/business\")\n",
" print(result.markdown[:500]) # Print first 500 characters\n",
"\n",
"await simple_crawl()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Advanced Features\n",
"\n",
"### Executing JavaScript and Using CSS Selectors"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async def js_and_css():\n",
" async with AsyncWebCrawler(verbose=True) as crawler:\n",
" js_code = [\"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();\"]\n",
" result = await crawler.arun(\n",
" url=\"https://www.nbcnews.com/business\",\n",
" js_code=js_code,\n",
" css_selector=\"article.tease-card\",\n",
" bypass_cache=True\n",
" )\n",
" print(result.extracted_content[:500]) # Print first 500 characters\n",
"\n",
"await js_and_css()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using a Proxy\n",
"\n",
"Note: You'll need to replace the proxy URL with a working proxy for this example to run successfully."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async def use_proxy():\n",
" async with AsyncWebCrawler(verbose=True, proxy=\"http://your-proxy-url:port\") as crawler:\n",
" result = await crawler.arun(\n",
" url=\"https://www.nbcnews.com/business\",\n",
" bypass_cache=True\n",
" )\n",
" print(result.markdown[:500]) # Print first 500 characters\n",
"\n",
"# Uncomment the following line to run the proxy example\n",
"# await use_proxy()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Extracting Structured Data with OpenAI\n",
"\n",
"Note: You'll need to set your OpenAI API key as an environment variable for this example to work."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"class OpenAIModelFee(BaseModel):\n",
" model_name: str = Field(..., description=\"Name of the OpenAI model.\")\n",
" input_fee: str = Field(..., description=\"Fee for input token for the OpenAI model.\")\n",
" output_fee: str = Field(..., description=\"Fee for output token for the OpenAI model.\")\n",
"\n",
"async def extract_openai_fees():\n",
" async with AsyncWebCrawler(verbose=True) as crawler:\n",
" result = await crawler.arun(\n",
" url='https://openai.com/api/pricing/',\n",
" word_count_threshold=1,\n",
" extraction_strategy=LLMExtractionStrategy(\n",
" provider=\"openai/gpt-4o\", api_token=os.getenv('OPENAI_API_KEY'), \n",
" schema=OpenAIModelFee.schema(),\n",
" extraction_type=\"schema\",\n",
" instruction=\"\"\"From the crawled content, extract all mentioned model names along with their fees for input and output tokens. \n",
" Do not miss any models in the entire content. One extracted model JSON format should look like this: \n",
" {\"model_name\": \"GPT-4\", \"input_fee\": \"US$10.00 / 1M tokens\", \"output_fee\": \"US$30.00 / 1M tokens\"}.\"\"\"\n",
" ), \n",
" bypass_cache=True,\n",
" )\n",
" print(result.extracted_content)\n",
"\n",
"# Uncomment the following line to run the OpenAI extraction example\n",
"# await extract_openai_fees()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Advanced Multi-Page Crawling with JavaScript Execution"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import re\n",
"from bs4 import BeautifulSoup\n",
"\n",
"async def crawl_typescript_commits():\n",
" first_commit = \"\"\n",
" async def on_execution_started(page):\n",
" nonlocal first_commit \n",
" try:\n",
" while True:\n",
" await page.wait_for_selector('li.Box-sc-g0xbh4-0 h4')\n",
" commit = await page.query_selector('li.Box-sc-g0xbh4-0 h4')\n",
" commit = await commit.evaluate('(element) => element.textContent')\n",
" commit = re.sub(r'\\s+', '', commit)\n",
" if commit and commit != first_commit:\n",
" first_commit = commit\n",
" break\n",
" await asyncio.sleep(0.5)\n",
" except Exception as e:\n",
" print(f\"Warning: New content didn't appear after JavaScript execution: {e}\")\n",
"\n",
" async with AsyncWebCrawler(verbose=True) as crawler:\n",
" crawler.crawler_strategy.set_hook('on_execution_started', on_execution_started)\n",
"\n",
" url = \"https://github.com/microsoft/TypeScript/commits/main\"\n",
" session_id = \"typescript_commits_session\"\n",
" all_commits = []\n",
"\n",
" js_next_page = \"\"\"\n",
" const button = document.querySelector('a[data-testid=\"pagination-next-button\"]');\n",
" if (button) button.click();\n",
" \"\"\"\n",
"\n",
" for page in range(3): # Crawl 3 pages\n",
" result = await crawler.arun(\n",
" url=url,\n",
" session_id=session_id,\n",
" css_selector=\"li.Box-sc-g0xbh4-0\",\n",
" js=js_next_page if page > 0 else None,\n",
" bypass_cache=True,\n",
" js_only=page > 0\n",
" )\n",
"\n",
" assert result.success, f\"Failed to crawl page {page + 1}\"\n",
"\n",
" soup = BeautifulSoup(result.cleaned_html, 'html.parser')\n",
" commits = soup.select(\"li\")\n",
" all_commits.extend(commits)\n",
"\n",
" print(f\"Page {page + 1}: Found {len(commits)} commits\")\n",
"\n",
" await crawler.crawler_strategy.kill_session(session_id)\n",
" print(f\"Successfully crawled {len(all_commits)} commits across 3 pages\")\n",
"\n",
"await crawl_typescript_commits()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using JsonCssExtractionStrategy for Fast Structured Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async def extract_news_teasers():\n",
" schema = {\n",
" \"name\": \"News Teaser Extractor\",\n",
" \"baseSelector\": \".wide-tease-item__wrapper\",\n",
" \"fields\": [\n",
" {\n",
" \"name\": \"category\",\n",
" \"selector\": \".unibrow span[data-testid='unibrow-text']\",\n",
" \"type\": \"text\",\n",
" },\n",
" {\n",
" \"name\": \"headline\",\n",
" \"selector\": \".wide-tease-item__headline\",\n",
" \"type\": \"text\",\n",
" },\n",
" {\n",
" \"name\": \"summary\",\n",
" \"selector\": \".wide-tease-item__description\",\n",
" \"type\": \"text\",\n",
" },\n",
" {\n",
" \"name\": \"time\",\n",
" \"selector\": \"[data-testid='wide-tease-date']\",\n",
" \"type\": \"text\",\n",
" },\n",
" {\n",
" \"name\": \"image\",\n",
" \"type\": \"nested\",\n",
" \"selector\": \"picture.teasePicture img\",\n",
" \"fields\": [\n",
" {\"name\": \"src\", \"type\": \"attribute\", \"attribute\": \"src\"},\n",
" {\"name\": \"alt\", \"type\": \"attribute\", \"attribute\": \"alt\"},\n",
" ],\n",
" },\n",
" {\n",
" \"name\": \"link\",\n",
" \"selector\": \"a[href]\",\n",
" \"type\": \"attribute\",\n",
" \"attribute\": \"href\",\n",
" },\n",
" ],\n",
" }\n",
"\n",
" extraction_strategy = JsonCssExtractionStrategy(schema, verbose=True)\n",
"\n",
" async with AsyncWebCrawler(verbose=True) as crawler:\n",
" result = await crawler.arun(\n",
" url=\"https://www.nbcnews.com/business\",\n",
" extraction_strategy=extraction_strategy,\n",
" bypass_cache=True,\n",
" )\n",
"\n",
" assert result.success, \"Failed to crawl the page\"\n",
"\n",
" news_teasers = json.loads(result.extracted_content)\n",
" print(f\"Successfully extracted {len(news_teasers)} news teasers\")\n",
" print(json.dumps(news_teasers[0], indent=2))\n",
"\n",
"await extract_news_teasers()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Speed Comparison\n",
"\n",
"Let's compare the speed of Crawl4AI with Firecrawl, a paid service. Note that we can't run Firecrawl in this Colab environment, so we'll simulate its performance based on previously recorded data."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import time\n",
"\n",
"async def speed_comparison():\n",
" # Simulated Firecrawl performance\n",
" print(\"Firecrawl (simulated):\")\n",
" print(\"Time taken: 7.02 seconds\")\n",
" print(\"Content length: 42074 characters\")\n",
" print(\"Images found: 49\")\n",
" print()\n",
"\n",
" async with AsyncWebCrawler() as crawler:\n",
" # Crawl4AI simple crawl\n",
" start = time.time()\n",
" result = await crawler.arun(\n",
" url=\"https://www.nbcnews.com/business\",\n",
" word_count_threshold=0,\n",
" bypass_cache=True, \n",
" verbose=False\n",
" )\n",
" end = time.time()\n",
" print(\"Crawl4AI (simple crawl):\")\n",
" print(f\"Time taken: {end - start:.2f} seconds\")\n",
" print(f\"Content length: {len(result.markdown)} characters\")\n",
" print(f\"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}\")\n",
" print()\n",
"\n",
" # Crawl4AI with JavaScript execution\n",
" start = time.time()\n",
" result = await crawler.arun(\n",
" url=\"https://www.nbcnews.com/business\",\n",
" js_code=[\"const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();\"],\n",
" word_count_threshold=0,\n",
" bypass_cache=True, \n",
" verbose=False\n",
" )\n",
" end = time.time()\n",
" print(\"Crawl4AI (with JavaScript execution):\")\n",
" print(f\"Time taken: {end - start:.2f} seconds\")\n",
" print(f\"Content length: {len(result.markdown)} characters\")\n",
" print(f\"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}\")\n",
"\n",
"await speed_comparison()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As you can see, Crawl4AI outperforms Firecrawl significantly:\n",
"- Simple crawl: Crawl4AI is typically over 4 times faster than Firecrawl.\n",
"- With JavaScript execution: Even when executing JavaScript to load more content (potentially doubling the number of images found), Crawl4AI is still faster than Firecrawl's simple crawl.\n",
"\n",
"Please note that actual performance may vary depending on network conditions and the specific content being crawled."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conclusion\n",
"\n",
"In this notebook, we've explored the powerful features of Crawl4AI, including:\n",
"\n",
"1. Basic crawling\n",
"2. JavaScript execution and CSS selector usage\n",
"3. Proxy support\n",
"4. Structured data extraction with OpenAI\n",
"5. Advanced multi-page crawling with JavaScript execution\n",
"6. Fast structured output using JsonCssExtractionStrategy\n",
"7. Speed comparison with other services\n",
"\n",
"Crawl4AI offers a fast, flexible, and powerful solution for web crawling and data extraction tasks. Its asynchronous architecture and advanced features make it suitable for a wide range of applications, from simple web scraping to complex, multi-page data extraction scenarios.\n",
"\n",
"For more information and advanced usage, please visit the [Crawl4AI documentation](https://crawl4ai.com/mkdocs/).\n",
"\n",
"Happy crawling!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}