crawl4ai/docs/md_v2/advanced/content-processing.md
2024-10-27 19:24:46 +08:00

223 lines
6.9 KiB
Markdown

# Content Processing
Crawl4AI provides powerful content processing capabilities that help you extract clean, relevant content from web pages. This guide covers content cleaning, media handling, link analysis, and metadata extraction.
## Content Cleaning
### Understanding Clean Content
When crawling web pages, you often encounter a lot of noise - advertisements, navigation menus, footers, popups, and other irrelevant content. Crawl4AI automatically cleans this noise using several approaches:
1. **Basic Cleaning**: Removes unwanted HTML elements and attributes
2. **Content Relevance**: Identifies and preserves meaningful content blocks
3. **Layout Analysis**: Understands page structure to identify main content areas
```python
result = await crawler.arun(
url="https://example.com",
word_count_threshold=10, # Remove blocks with fewer words
excluded_tags=['form', 'nav'], # Remove specific HTML tags
remove_overlay_elements=True # Remove popups/modals
)
# Get clean content
print(result.cleaned_html) # Cleaned HTML
print(result.markdown) # Clean markdown version
```
### Fit Markdown: Smart Content Extraction
One of Crawl4AI's most powerful features is `fit_markdown`. This feature uses advanced heuristics to identify and extract the main content from a webpage while excluding irrelevant elements.
#### How Fit Markdown Works
- Analyzes content density and distribution
- Identifies content patterns and structures
- Removes boilerplate content (headers, footers, sidebars)
- Preserves the most relevant content blocks
- Maintains content hierarchy and formatting
#### Perfect For:
- Blog posts and articles
- News content
- Documentation pages
- Any page with a clear main content area
#### Not Recommended For:
- E-commerce product listings
- Search results pages
- Social media feeds
- Pages with multiple equal-weight content sections
```python
result = await crawler.arun(url="https://example.com")
# Get the most relevant content
main_content = result.fit_markdown
# Compare with regular markdown
all_content = result.markdown
print(f"Fit Markdown Length: {len(main_content)}")
print(f"Regular Markdown Length: {len(all_content)}")
```
#### Example Use Case
```python
async def extract_article_content(url: str) -> str:
"""Extract main article content from a blog or news site."""
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(url=url)
# fit_markdown will focus on the article content,
# excluding navigation, ads, and other distractions
return result.fit_markdown
```
## Media Processing
Crawl4AI provides comprehensive media extraction and analysis capabilities. It automatically detects and processes various types of media elements while maintaining their context and relevance.
### Image Processing
The library handles various image scenarios, including:
- Regular images
- Lazy-loaded images
- Background images
- Responsive images
- Image metadata and context
```python
result = await crawler.arun(url="https://example.com")
for image in result.media["images"]:
# Each image includes rich metadata
print(f"Source: {image['src']}")
print(f"Alt text: {image['alt']}")
print(f"Description: {image['desc']}")
print(f"Context: {image['context']}") # Surrounding text
print(f"Relevance score: {image['score']}") # 0-10 score
```
### Handling Lazy-Loaded Content
Crawl4aai already handles lazy loading for media elements. You can also customize the wait time for lazy-loaded content:
```python
result = await crawler.arun(
url="https://example.com",
wait_for="css:img[data-src]", # Wait for lazy images
delay_before_return_html=2.0 # Additional wait time
)
```
### Video and Audio Content
The library extracts video and audio elements with their metadata:
```python
# Process videos
for video in result.media["videos"]:
print(f"Video source: {video['src']}")
print(f"Type: {video['type']}")
print(f"Duration: {video.get('duration')}")
print(f"Thumbnail: {video.get('poster')}")
# Process audio
for audio in result.media["audios"]:
print(f"Audio source: {audio['src']}")
print(f"Type: {audio['type']}")
print(f"Duration: {audio.get('duration')}")
```
## Link Analysis
Crawl4AI provides sophisticated link analysis capabilities, helping you understand the relationship between pages and identify important navigation patterns.
### Link Classification
The library automatically categorizes links into:
- Internal links (same domain)
- External links (different domains)
- Social media links
- Navigation links
- Content links
```python
result = await crawler.arun(url="https://example.com")
# Analyze internal links
for link in result.links["internal"]:
print(f"Internal: {link['href']}")
print(f"Link text: {link['text']}")
print(f"Context: {link['context']}") # Surrounding text
print(f"Type: {link['type']}") # nav, content, etc.
# Analyze external links
for link in result.links["external"]:
print(f"External: {link['href']}")
print(f"Domain: {link['domain']}")
print(f"Type: {link['type']}")
```
### Smart Link Filtering
Control which links are included in the results:
```python
result = await crawler.arun(
url="https://example.com",
exclude_external_links=True, # Remove external links
exclude_social_media_links=True, # Remove social media links
exclude_social_media_domains=[ # Custom social media domains
"facebook.com", "twitter.com", "instagram.com"
],
exclude_domains=["ads.example.com"] # Exclude specific domains
)
```
## Metadata Extraction
Crawl4AI automatically extracts and processes page metadata, providing valuable information about the content:
```python
result = await crawler.arun(url="https://example.com")
metadata = result.metadata
print(f"Title: {metadata['title']}")
print(f"Description: {metadata['description']}")
print(f"Keywords: {metadata['keywords']}")
print(f"Author: {metadata['author']}")
print(f"Published Date: {metadata['published_date']}")
print(f"Modified Date: {metadata['modified_date']}")
print(f"Language: {metadata['language']}")
```
## Best Practices
1. **Use Fit Markdown for Articles**
```python
# Perfect for blog posts, news articles, documentation
content = result.fit_markdown
```
2. **Handle Media Appropriately**
```python
# Filter by relevance score
relevant_images = [
img for img in result.media["images"]
if img['score'] > 5
]
```
3. **Combine Link Analysis with Content**
```python
# Get content links with context
content_links = [
link for link in result.links["internal"]
if link['type'] == 'content'
]
```
4. **Clean Content with Purpose**
```python
# Customize cleaning based on your needs
result = await crawler.arun(
url=url,
word_count_threshold=20, # Adjust based on content type
keep_data_attributes=False, # Remove data attributes
process_iframes=True # Include iframe content
)
```