crawl4ai/docs/md _sync/examples/summarization.md

109 lines
4.0 KiB
Markdown

## Summarization Example
This example demonstrates how to use `Crawl4AI` to extract a summary from a web page. The goal is to obtain the title, a detailed summary, a brief summary, and a list of keywords from the given page.
### Step-by-Step Guide
1. **Import Necessary Modules**
First, import the necessary modules and classes.
```python
import os
import time
import json
from crawl4ai.web_crawler import WebCrawler
from crawl4ai.chunking_strategy import *
from crawl4ai.extraction_strategy import *
from crawl4ai.crawler_strategy import *
from pydantic import BaseModel, Field
```
2. **Define the URL to be Crawled**
Set the URL of the web page you want to summarize.
```python
url = r'https://marketplace.visualstudio.com/items?itemName=Unclecode.groqopilot'
```
3. **Initialize the WebCrawler**
Create an instance of the `WebCrawler` and call the `warmup` method.
```python
crawler = WebCrawler()
crawler.warmup()
```
4. **Define the Data Model**
Use Pydantic to define the structure of the extracted data.
```python
class PageSummary(BaseModel):
title: str = Field(..., description="Title of the page.")
summary: str = Field(..., description="Summary of the page.")
brief_summary: str = Field(..., description="Brief summary of the page.")
keywords: list = Field(..., description="Keywords assigned to the page.")
```
5. **Run the Crawler**
Set up and run the crawler with the `LLMExtractionStrategy`. Provide the necessary parameters, including the schema for the extracted data and the instruction for the LLM.
```python
result = crawler.run(
url=url,
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
provider="openai/gpt-4o",
api_token=os.getenv('OPENAI_API_KEY'),
schema=PageSummary.model_json_schema(),
extraction_type="schema",
apply_chunking=False,
instruction=(
"From the crawled content, extract the following details: "
"1. Title of the page "
"2. Summary of the page, which is a detailed summary "
"3. Brief summary of the page, which is a paragraph text "
"4. Keywords assigned to the page, which is a list of keywords. "
'The extracted JSON format should look like this: '
'{ "title": "Page Title", "summary": "Detailed summary of the page.", '
'"brief_summary": "Brief summary in a paragraph.", "keywords": ["keyword1", "keyword2", "keyword3"] }'
)
),
bypass_cache=True,
)
```
6. **Process the Extracted Data**
Load the extracted content into a JSON object and print it.
```python
page_summary = json.loads(result.extracted_content)
print(page_summary)
```
7. **Save the Extracted Data**
Save the extracted data to a file for further use.
```python
with open(".data/page_summary.json", "w", encoding="utf-8") as f:
f.write(result.extracted_content)
```
### Explanation
- **Importing Modules**: Import the necessary modules, including `WebCrawler` and `LLMExtractionStrategy` from `Crawl4AI`.
- **URL Definition**: Set the URL of the web page you want to crawl and summarize.
- **WebCrawler Initialization**: Create an instance of `WebCrawler` and call the `warmup` method to prepare the crawler.
- **Data Model Definition**: Define the structure of the data you want to extract using Pydantic's `BaseModel`.
- **Crawler Execution**: Run the crawler with the `LLMExtractionStrategy`, providing the schema and detailed instructions for the extraction process.
- **Data Processing**: Load the extracted content into a JSON object and print it to verify the results.
- **Data Saving**: Save the extracted data to a file for further use.
This example demonstrates how to harness the power of `Crawl4AI` to perform advanced web crawling and data extraction tasks with minimal code.