🔥🕷️ Crawl4AI: Crawl Smarter, Faster, Freely. For AI.
Crawl4AI is the #1 trending GitHub repository, actively maintained by a vibrant community. It delivers blazing-fast, AI-ready web crawling tailored for LLMs, AI agents, and data pipelines. Open source, flexible, and built for real-time performance, Crawl4AI empowers developers with unmatched speed, precision, and deployment ease.
✨ Check out latest update v0.3.745
🧐 Why Crawl4AI?
- Built for LLMs: Creates smart, concise Markdown optimized for RAG and fine-tuning applications.
- Lightning Fast: Delivers results 6x faster with real-time, cost-efficient performance.
- Flexible Browser Control: Offers session management, proxies, and custom hooks for seamless data access.
- Heuristic Intelligence: Uses advanced algorithms for efficient extraction, reducing reliance on costly models.
- Open Source & Deployable: Fully open-source with no API keys—ready for Docker and cloud integration.
- Thriving Community: Actively maintained by a vibrant community and the #1 trending GitHub repository.
🚀 Quick Start
- Install Crawl4AI:
pip install crawl4ai
- Run a simple web crawl:
import asyncio
from crawl4ai import AsyncWebCrawler, CacheMode
async def main():
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(url="https://www.nbcnews.com/business")
# Soone will be change to result.markdown
print(result.markdown_v2.raw_markdown)
if __name__ == "__main__":
asyncio.run(main())
✨ Features
📝 Markdown Generation
- 🧹 Clean Markdown: Generates clean, structured Markdown with accurate formatting.
- 🎯 Fit Markdown: Heuristic-based filtering to remove noise and irrelevant parts for AI-friendly processing.
- 🔗 Citations and References: Converts page links into a numbered reference list with clean citations.
- 🛠️ Custom Strategies: Users can create their own Markdown generation strategies tailored to specific needs.
- 📚 BM25 Algorithm: Employs BM25-based filtering for extracting core information and removing irrelevant content.
📊 Structured Data Extraction
- 🤖 LLM-Driven Extraction: Supports all LLMs (open-source and proprietary) for structured data extraction.
- 🧱 Chunking Strategies: Implements chunking (topic-based, regex, sentence-level) for targeted content processing.
- 🌌 Cosine Similarity: Find relevant content chunks based on user queries for semantic extraction.
- 🔎 CSS-Based Extraction: Fast schema-based data extraction using XPath and CSS selectors.
- 🔧 Schema Definition: Define custom schemas for extracting structured JSON from repetitive patterns.
🌐 Browser Integration
- 🖥️ Managed Browser: Use user-owned browsers with full control, avoiding bot detection.
- 🔄 Remote Browser Control: Connect to Chrome Developer Tools Protocol for remote, large-scale data extraction.
- 🔒 Session Management: Preserve browser states and reuse them for multi-step crawling.
- 🧩 Proxy Support: Seamlessly connect to proxies with authentication for secure access.
- ⚙️ Full Browser Control: Modify headers, cookies, user agents, and more for tailored crawling setups.
- 🌍 Multi-Browser Support: Compatible with Chromium, Firefox, and WebKit.
🔎 Crawling & Scraping
- 🖼️ Media Support: Extract images, audio, videos, and responsive image formats like
srcset
andpicture
. - 🚀 Dynamic Crawling: Execute JS and wait for async or sync for dynamic content extraction.
- 📸 Screenshots: Capture page screenshots during crawling for debugging or analysis.
- 📂 Raw Data Crawling: Directly process raw HTML (
raw:
) or local files (file://
). - 🔗 Comprehensive Link Extraction: Extracts internal, external links, and embedded iframe content.
- 🛠️ Customizable Hooks: Define hooks at every step to customize crawling behavior.
- 💾 Caching: Cache data for improved speed and to avoid redundant fetches.
- 📄 Metadata Extraction: Retrieve structured metadata from web pages.
- 📡 IFrame Content Extraction: Seamless extraction from embedded iframe content.
🚀 Deployment
- 🐳 Dockerized Setup: Optimized Docker image with API server for easy deployment.
- 🔄 API Gateway: One-click deployment with secure token authentication for API-based workflows.
- 🌐 Scalable Architecture: Designed for mass-scale production and optimized server performance.
- ⚙️ DigitalOcean Deployment: Ready-to-deploy configurations for DigitalOcean and similar platforms.
🎯 Additional Features
- 🕶️ Stealth Mode: Avoid bot detection by mimicking real users.
- 🏷️ Tag-Based Content Extraction: Refine crawling based on custom tags, headers, or metadata.
- 🔗 Link Analysis: Extract and analyze all links for detailed data exploration.
- 🛡️ Error Handling: Robust error management for seamless execution.
- 🔐 CORS & Static Serving: Supports filesystem-based caching and cross-origin requests.
- 📖 Clear Documentation: Simplified and updated guides for onboarding and advanced usage.
- 🙌 Community Recognition: Acknowledges contributors and pull requests for transparency.
Try it Now!
✨ Visit our Documentation Website
Features ✨
- 🆓 Completely free and open-source
- 🚀 Blazing fast performance, outperforming many paid services
- 🤖 LLM-friendly output formats (JSON, cleaned HTML, markdown)
- 🌐 Multi-browser support (Chromium, Firefox, WebKit)
- 🌍 Supports crawling multiple URLs simultaneously
- 🎨 Extracts and returns all media tags (Images, Audio, and Video)
- 🔗 Extracts all external and internal links
- 📚 Extracts metadata from the page
- 🔄 Custom hooks for authentication, headers, and page modifications
- 🕵️ User-agent customization
- 🖼️ Takes screenshots of pages with enhanced error handling
- 📜 Executes multiple custom JavaScripts before crawling
- 📊 Generates structured output without LLM using JsonCssExtractionStrategy
- 📚 Various chunking strategies: topic-based, regex, sentence, and more
- 🧠 Advanced extraction strategies: cosine clustering, LLM, and more
- 🎯 CSS selector support for precise data extraction
- 📝 Passes instructions/keywords to refine extraction
- 🔒 Proxy support with authentication for enhanced access
- 🔄 Session management for complex multi-page crawling
- 🌐 Asynchronous architecture for improved performance
- 🖼️ Improved image processing with lazy-loading detection
- 🕰️ Enhanced handling of delayed content loading
- 🔑 Custom headers support for LLM interactions
- 🖼️ iframe content extraction for comprehensive analysis
- ⏱️ Flexible timeout and delayed content retrieval options
Installation 🛠️
Crawl4AI offers flexible installation options to suit various use cases. You can install it as a Python package or use Docker.
🐍 Using pip
Choose the installation option that best fits your needs:
Basic Installation
For basic web crawling and scraping tasks:
pip install crawl4ai
By default, this will install the asynchronous version of Crawl4AI, using Playwright for web crawling.
👉 Note: When you install Crawl4AI, the setup script should automatically install and set up Playwright. However, if you encounter any Playwright-related errors, you can manually install it using one of these methods:
-
Through the command line:
playwright install
-
If the above doesn't work, try this more specific command:
python -m playwright install chromium
This second method has proven to be more reliable in some cases.
Installation with Synchronous Version
The sync version is deprecated and will be removed in future versions. If you need the synchronous version using Selenium:
pip install crawl4ai[sync]
Development Installation
For contributors who plan to modify the source code:
git clone https://github.com/unclecode/crawl4ai.git
cd crawl4ai
pip install -e . # Basic installation in editable mode
Install optional features:
pip install -e ".[torch]" # With PyTorch features
pip install -e ".[transformer]" # With Transformer features
pip install -e ".[cosine]" # With cosine similarity features
pip install -e ".[sync]" # With synchronous crawling (Selenium)
pip install -e ".[all]" # Install all optional features
🚀 One-Click Deployment
Deploy your own instance of Crawl4AI with one click:
💡 Recommended specs: 4GB RAM minimum. Select "professional-xs" or higher when deploying for stable operation.
The deploy will:
- Set up a Docker container with Crawl4AI
- Configure Playwright and all dependencies
- Start the FastAPI server on port
11235
- Set up health checks and auto-deployment
🐳 Using Docker
Crawl4AI is available as Docker images for easy deployment. You can either pull directly from Docker Hub (recommended) or build from the repository.
Option 1: Docker Hub (Recommended)
# Pull and run from Docker Hub (choose one):
docker pull unclecode/crawl4ai:basic # Basic crawling features
docker pull unclecode/crawl4ai:all # Full installation (ML, LLM support)
docker pull unclecode/crawl4ai:gpu # GPU-enabled version
# Run the container
docker run -p 11235:11235 unclecode/crawl4ai:basic # Replace 'basic' with your chosen version
# In case you want to set platform to arm64
docker run --platform linux/arm64 -p 11235:11235 unclecode/crawl4ai:basic
# In case to allocate more shared memory for the container
docker run --shm-size=2gb -p 11235:11235 unclecode/crawl4ai:basic
Option 2: Build from Repository
# Clone the repository
git clone https://github.com/unclecode/crawl4ai.git
cd crawl4ai
# Build the image
docker build -t crawl4ai:local \
--build-arg INSTALL_TYPE=basic \ # Options: basic, all
.
# In case you want to set platform to arm64
docker build -t crawl4ai:local \
--build-arg INSTALL_TYPE=basic \ # Options: basic, all
--platform linux/arm64 \
.
# Run your local build
docker run -p 11235:11235 crawl4ai:local
Quick Test
Run a quick test (works for both Docker options):
import requests
# Submit a crawl job
response = requests.post(
"http://localhost:11235/crawl",
json={"urls": "https://example.com", "priority": 10}
)
task_id = response.json()["task_id"]
# Get results
result = requests.get(f"http://localhost:11235/task/{task_id}")
For advanced configuration, environment variables, and usage examples, see our Docker Deployment Guide.
🔬 Advanced Usage Examples 🔬
You can check the project structure in the directory https://github.com/unclecode/crawl4ai/docs/examples. Over there, you can find a variety of examples; here, some popular examples are shared.
📝 Heuristic Markdown Generation with Clean and Fit Markdown
import asyncio
from crawl4ai import AsyncWebCrawler, CacheMode
from crawl4ai.content_filter_strategy import BM25ContentFilter
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
async def main():
async with AsyncWebCrawler(
headless=True,
verbose=True,
) as crawler:
result = await crawler.arun(
url="https://docs.micronaut.io/4.7.6/guide/",
cache_mode=CacheMode.ENABLED,
markdown_generator=DefaultMarkdownGenerator(
content_filter=BM25ContentFilter(user_query=None, bm25_threshold=1.0)
),
)
print(len(result.markdown))
print(len(result.fit_markdown))
print(len(result.markdown_v2.fit_markdown))
if __name__ == "__main__":
asyncio.run(main())
🖥️ Executing JavaScript & Extract Structured Data without LLMs
import asyncio
from crawl4ai import AsyncWebCrawler, CacheMode
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy
import json
async def main():
schema = {
"name": "KidoCode Courses",
"baseSelector": "section.charge-methodology .w-tab-content > div",
"fields": [
{
"name": "section_title",
"selector": "h3.heading-50",
"type": "text",
},
{
"name": "section_description",
"selector": ".charge-content",
"type": "text",
},
{
"name": "course_name",
"selector": ".text-block-93",
"type": "text",
},
{
"name": "course_description",
"selector": ".course-content-text",
"type": "text",
},
{
"name": "course_icon",
"selector": ".image-92",
"type": "attribute",
"attribute": "src"
}
]
}
extraction_strategy = JsonCssExtractionStrategy(schema, verbose=True)
async with AsyncWebCrawler(
headless=False,
verbose=True
) as crawler:
# Create the JavaScript that handles clicking multiple times
js_click_tabs = """
(async () => {
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
for(let tab of tabs) {
// scroll to the tab
tab.scrollIntoView();
tab.click();
// Wait for content to load and animations to complete
await new Promise(r => setTimeout(r, 500));
}
})();
"""
result = await crawler.arun(
url="https://www.kidocode.com/degrees/technology",
extraction_strategy=JsonCssExtractionStrategy(schema, verbose=True),
js_code=[js_click_tabs],
cache_mode=CacheMode.BYPASS
)
companies = json.loads(result.extracted_content)
print(f"Successfully extracted {len(companies)} companies")
print(json.dumps(companies[0], indent=2))
if __name__ == "__main__":
asyncio.run(main())
📚 Extracting Structured Data with LLMs
import os
import asyncio
from crawl4ai import AsyncWebCrawler, CacheMode
from crawl4ai.extraction_strategy import LLMExtractionStrategy
from pydantic import BaseModel, Field
class OpenAIModelFee(BaseModel):
model_name: str = Field(..., description="Name of the OpenAI model.")
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
output_fee: str = Field(..., description="Fee for output token for the OpenAI model.")
async def main():
async with AsyncWebCrawler(verbose=True) as crawler:
result = await crawler.arun(
url='https://openai.com/api/pricing/',
word_count_threshold=1,
extraction_strategy=LLMExtractionStrategy(
# Here you can use any provider that Litellm library supports, for instance: ollama/qwen2
# provider="ollama/qwen2", api_token="no-token",
provider="openai/gpt-4o", api_token=os.getenv('OPENAI_API_KEY'),
schema=OpenAIModelFee.schema(),
extraction_type="schema",
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
Do not miss any models in the entire content. One extracted model JSON format should look like this:
{"model_name": "GPT-4", "input_fee": "US$10.00 / 1M tokens", "output_fee": "US$30.00 / 1M tokens"}."""
),
cache_mode=CacheMode.BYPASS,
)
print(result.extracted_content)
if __name__ == "__main__":
asyncio.run(main())
🤖 Using You own Browswer with Custome User Profile
import os, sys
from pathlib import Path
import asyncio, time
from crawl4ai import AsyncWebCrawler
async def test_news_crawl():
# Create a persistent user data directory
user_data_dir = os.path.join(Path.home(), ".crawl4ai", "browser_profile")
os.makedirs(user_data_dir, exist_ok=True)
async with AsyncWebCrawler(
verbose=True,
headless=True,
user_data_dir=user_data_dir,
use_persistent_context=True,
headers={
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5",
"Accept-Encoding": "gzip, deflate, br",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
"Sec-Fetch-Dest": "document",
"Sec-Fetch-Mode": "navigate",
"Sec-Fetch-Site": "none",
"Sec-Fetch-User": "?1",
"Cache-Control": "max-age=0",
}
) as crawler:
url = "ADDRESS_OF_A_CHALLENGING_WEBSITE"
result = await crawler.arun(
url,
cache_mode=CacheMode.BYPASS,
magic=True,
)
print(f"Successfully crawled {url}")
print(f"Content length: {len(result.markdown)}")
✨ Recent Updates
- 🚀 Improved ManagedBrowser Configuration: Dynamic host and port support for more flexible browser management.
- 📝 Enhanced Markdown Generation: New generator class for better formatting and customization.
- ⚡ Fast HTML Formatting: Significantly optimized HTML formatting in the web crawler.
- 🛠️ Utility & Sanitization Upgrades: Improved sanitization and expanded utility functions for streamlined workflows.
- 👥 Acknowledgments: Added contributor details and pull request acknowledgments for better transparency.
📖 Documentation & Roadmap
For detailed documentation, including installation instructions, advanced features, and API reference, visit our Documentation Website.
Moreover to check our development plans and upcoming features, check out our Roadmap.
📈 Development TODOs
- 0. Graph Crawler: Smart website traversal using graph search algorithms for comprehensive nested page extraction
- 1. Question-Based Crawler: Natural language driven web discovery and content extraction
- 2. Knowledge-Optimal Crawler: Smart crawling that maximizes knowledge while minimizing data extraction
- 3. Agentic Crawler: Autonomous system for complex multi-step crawling operations
- 4. Automated Schema Generator: Convert natural language to extraction schemas
- 5. Domain-Specific Scrapers: Pre-configured extractors for common platforms (academic, e-commerce)
- 6. Web Embedding Index: Semantic search infrastructure for crawled content
- 7. Interactive Playground: Web UI for testing, comparing strategies with AI assistance
- 8. Performance Monitor: Real-time insights into crawler operations
- 9. Cloud Integration: One-click deployment solutions across cloud providers
- 10. Sponsorship Program: Structured support system with tiered benefits
- 11. Educational Content: "How to Crawl" video series and interactive tutorials
🤝 Contributing
We welcome contributions from the open-source community. Check out our contribution guidelines for more information.
📄 License
Crawl4AI is released under the Apache 2.0 License.
📧 Contact
For questions, suggestions, or feedback, feel free to reach out:
- GitHub: unclecode
- Twitter: @unclecode
- Website: crawl4ai.com
Happy Crawling! 🕸️🚀
🗾 Mission
Our mission is to unlock the value of personal and enterprise data by transforming digital footprints into structured, tradeable assets. Crawl4AI empowers individuals and organizations with open-source tools to extract and structure data, fostering a shared data economy.
We envision a future where AI is powered by real human knowledge, ensuring data creators directly benefit from their contributions. By democratizing data and enabling ethical sharing, we are laying the foundation for authentic AI advancement.
🔑 Key Opportunities
- Data Capitalization: Transform digital footprints into measurable, valuable assets.
- Authentic AI Data: Provide AI systems with real human insights.
- Shared Economy: Create a fair data marketplace that benefits data creators.
🚀 Development Pathway
- Open-Source Tools: Community-driven platforms for transparent data extraction.
- Digital Asset Structuring: Tools to organize and value digital knowledge.
- Ethical Data Marketplace: A secure, fair platform for exchanging structured data.
For more details, see our full mission statement.