crawl4ai/docs/examples/crypto_analysis_example.py
UncleCode ccec40ed17 feat(models): add dedicated tables field to CrawlResult
- Add tables field to CrawlResult model while maintaining backward compatibility
- Update async_webcrawler.py to extract tables from media and pass to tables field
- Update crypto_analysis_example.py to use the new tables field
- Add /config/dump examples to demo_docker_api.py
- Bump version to 0.6.1
2025-04-24 18:36:25 +08:00

446 lines
18 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Crawl4AI Crypto Trading Analysis Demo
Author: Unclecode
Date: 2024-03-15
This script demonstrates advanced crypto market analysis using:
1. Web scraping of real-time CoinMarketCap data
2. Smart table extraction with layout detection
3. Hedge fund-grade financial metrics
4. Interactive visualizations for trading signals
Key Features:
- Volume Anomaly Detection: Finds unusual trading activity
- Liquidity Power Score: Identifies easily tradable assets
- Volatility-Weighted Momentum: Surface sustainable trends
- Smart Money Signals: Algorithmic buy/hold recommendations
"""
import asyncio
import pandas as pd
import numpy as np
import re
import plotly.express as px
from crawl4ai import (
AsyncWebCrawler,
BrowserConfig,
CrawlerRunConfig,
CacheMode,
LXMLWebScrapingStrategy,
)
from crawl4ai import CrawlResult
from typing import List
__current_dir__ = __file__.rsplit("/", 1)[0]
class CryptoAlphaGenerator:
"""
Advanced crypto analysis engine that transforms raw web data into:
- Volume anomaly flags
- Liquidity scores
- Momentum-risk ratios
- Machine learning-inspired trading signals
Methods:
analyze_tables(): Process raw tables into trading insights
create_visuals(): Generate institutional-grade visualizations
generate_insights(): Create plain English trading recommendations
"""
def clean_data(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Convert crypto market data to machine-readable format.
Handles currency symbols, units (B=Billions), and percentage values.
"""
# Make a copy to avoid SettingWithCopyWarning
df = df.copy()
# Clean Price column (handle currency symbols)
df["Price"] = df["Price"].astype(str).str.replace("[^\d.]", "", regex=True).astype(float)
# Handle Market Cap and Volume, considering both Billions and Trillions
def convert_large_numbers(value):
if pd.isna(value):
return float('nan')
value = str(value)
multiplier = 1
if 'B' in value:
multiplier = 1e9
elif 'T' in value:
multiplier = 1e12
# Handle cases where the value might already be numeric
cleaned_value = re.sub(r"[^\d.]", "", value)
return float(cleaned_value) * multiplier if cleaned_value else float('nan')
df["Market Cap"] = df["Market Cap"].apply(convert_large_numbers)
df["Volume(24h)"] = df["Volume(24h)"].apply(convert_large_numbers)
# Convert percentages to decimal values
for col in ["1h %", "24h %", "7d %"]:
if col in df.columns:
# First ensure it's string, then clean
df[col] = (
df[col].astype(str)
.str.replace("%", "")
.str.replace(",", ".")
.replace("nan", np.nan)
)
df[col] = pd.to_numeric(df[col], errors='coerce') / 100
return df
def calculate_metrics(self, df: pd.DataFrame) -> pd.DataFrame:
"""
Compute advanced trading metrics used by quantitative funds:
1. Volume/Market Cap Ratio - Measures liquidity efficiency
(High ratio = Underestimated attention, and small-cap = higher growth potential)
2. Volatility Score - Risk-adjusted momentum potential - Shows how stable is the trend
(STD of 1h/24h/7d returns)
3. Momentum Score - Weighted average of returns - Shows how strong is the trend
(1h:30% + 24h:50% + 7d:20%)
4. Volume Anomaly - 3σ deviation detection
(Flags potential insider activity) - Unusual trading activity Flags coins with volume spikes (potential insider buying or news).
"""
# Liquidity Metrics
df["Volume/Market Cap Ratio"] = df["Volume(24h)"] / df["Market Cap"]
# Risk Metrics
df["Volatility Score"] = df[["1h %", "24h %", "7d %"]].std(axis=1)
# Momentum Metrics
df["Momentum Score"] = df["1h %"] * 0.3 + df["24h %"] * 0.5 + df["7d %"] * 0.2
# Anomaly Detection
median_vol = df["Volume(24h)"].median()
df["Volume Anomaly"] = df["Volume(24h)"] > 3 * median_vol
# Value Flags
# Undervalued Flag - Low market cap and high momentum
# (High growth potential and low attention)
df["Undervalued Flag"] = (df["Market Cap"] < 1e9) & (
df["Momentum Score"] > 0.05
)
# Liquid Giant Flag - High volume/market cap ratio and large market cap
# (High liquidity and large market cap = institutional interest)
df["Liquid Giant"] = (df["Volume/Market Cap Ratio"] > 0.15) & (
df["Market Cap"] > 1e9
)
return df
def generate_insights_simple(self, df: pd.DataFrame) -> str:
"""
Generates an ultra-actionable crypto trading report with:
- Risk-tiered opportunities (High/Medium/Low)
- Concrete examples for each trade type
- Entry/exit strategies spelled out
- Visual cues for quick scanning
"""
report = [
"🚀 **CRYPTO TRADING CHEAT SHEET** 🚀",
"*Based on quantitative signals + hedge fund tactics*",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
]
# 1. HIGH-RISK: Undervalued Small-Caps (Momentum Plays)
high_risk = df[df["Undervalued Flag"]].sort_values("Momentum Score", ascending=False)
if not high_risk.empty:
example_coin = high_risk.iloc[0]
report.extend([
"\n🔥 **HIGH-RISK: Rocket Fuel Small-Caps**",
f"*Example Trade:* {example_coin['Name']} (Price: ${example_coin['Price']:.6f})",
"📊 *Why?* Tiny market cap (<$1B) but STRONG momentum (+{:.0f}% last week)".format(example_coin['7d %']*100),
"🎯 *Strategy:*",
"1. Wait for 5-10% dip from recent high (${:.6f} → Buy under ${:.6f})".format(
example_coin['Price'] / (1 - example_coin['24h %']), # Approx recent high
example_coin['Price'] * 0.95
),
"2. Set stop-loss at -10% (${:.6f})".format(example_coin['Price'] * 0.90),
"3. Take profit at +20% (${:.6f})".format(example_coin['Price'] * 1.20),
"⚠️ *Risk Warning:* These can drop 30% fast! Never bet more than 5% of your portfolio.",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
])
# 2. MEDIUM-RISK: Liquid Giants (Swing Trades)
medium_risk = df[df["Liquid Giant"]].sort_values("Volume/Market Cap Ratio", ascending=False)
if not medium_risk.empty:
example_coin = medium_risk.iloc[0]
report.extend([
"\n💎 **MEDIUM-RISK: Liquid Giants (Safe Swing Trades)**",
f"*Example Trade:* {example_coin['Name']} (Market Cap: ${example_coin['Market Cap']/1e9:.1f}B)",
"📊 *Why?* Huge volume (${:.1f}M/day) makes it easy to enter/exit".format(example_coin['Volume(24h)']/1e6),
"🎯 *Strategy:*",
"1. Buy when 24h volume > 15% of market cap (Current: {:.0f}%)".format(example_coin['Volume/Market Cap Ratio']*100),
"2. Hold 1-4 weeks (Big coins trend longer)",
"3. Exit when momentum drops below 5% (Current: {:.0f}%)".format(example_coin['Momentum Score']*100),
"📉 *Pro Tip:* Watch Bitcoin's trend - if BTC drops 5%, these usually follow.",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
])
# 3. LOW-RISK: Stable Momentum (DCA Targets)
low_risk = df[
(df["Momentum Score"] > 0.05) &
(df["Volatility Score"] < 0.03)
].sort_values("Market Cap", ascending=False)
if not low_risk.empty:
example_coin = low_risk.iloc[0]
report.extend([
"\n🛡️ **LOW-RISK: Steady Climbers (DCA & Forget)**",
f"*Example Trade:* {example_coin['Name']} (Volatility: {example_coin['Volatility Score']:.2f}/5)",
"📊 *Why?* Rises steadily (+{:.0f}%/week) with LOW drama".format(example_coin['7d %']*100),
"🎯 *Strategy:*",
"1. Buy small amounts every Tuesday/Friday (DCA)",
"2. Hold for 3+ months (Compound gains work best here)",
"3. Sell 10% at every +25% milestone",
"💰 *Best For:* Long-term investors who hate sleepless nights",
"━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━"
])
# Volume Spike Alerts
anomalies = df[df["Volume Anomaly"]].sort_values("Volume(24h)", ascending=False)
if not anomalies.empty:
example_coin = anomalies.iloc[0]
report.extend([
"\n🚨 **Volume Spike Alert (Possible News/Whale Action)**",
f"*Coin:* {example_coin['Name']} (Volume: ${example_coin['Volume(24h)']/1e6:.1f}M, usual: ${example_coin['Volume(24h)']/3/1e6:.1f}M)",
"🔍 *Check:* Twitter/CoinGecko for news before trading",
"⚡ *If no news:* Could be insider buying - watch price action:",
"- Break above today's high → Buy with tight stop-loss",
"- Fade back down → Avoid (may be a fakeout)"
])
# Pro Tip Footer
report.append("\n✨ *Pro Tip:* Bookmark this report & check back in 24h to see if signals held up.")
return "\n".join(report)
def generate_insights(self, df: pd.DataFrame) -> str:
"""
Generates a tactical trading report with:
- Top 3 trades per risk level (High/Medium/Low)
- Auto-calculated entry/exit prices
- BTC chart toggle tip
"""
# Filter top candidates for each risk level
high_risk = (
df[df["Undervalued Flag"]]
.sort_values("Momentum Score", ascending=False)
.head(3)
)
medium_risk = (
df[df["Liquid Giant"]]
.sort_values("Volume/Market Cap Ratio", ascending=False)
.head(3)
)
low_risk = (
df[(df["Momentum Score"] > 0.05) & (df["Volatility Score"] < 0.03)]
.sort_values("Momentum Score", ascending=False)
.head(3)
)
report = ["# 🎯 Crypto Trading Tactical Report (Top 3 Per Risk Tier)"]
# 1. High-Risk Trades (Small-Cap Momentum)
if not high_risk.empty:
report.append("\n## 🔥 HIGH RISK: Small-Cap Rockets (5-50% Potential)")
for i, coin in high_risk.iterrows():
current_price = coin["Price"]
entry = current_price * 0.95 # -5% dip
stop_loss = current_price * 0.90 # -10%
take_profit = current_price * 1.20 # +20%
report.append(
f"\n### {coin['Name']} (Momentum: {coin['Momentum Score']:.1%})"
f"\n- **Current Price:** ${current_price:.4f}"
f"\n- **Entry:** < ${entry:.4f} (Wait for pullback)"
f"\n- **Stop-Loss:** ${stop_loss:.4f} (-10%)"
f"\n- **Target:** ${take_profit:.4f} (+20%)"
f"\n- **Risk/Reward:** 1:2"
f"\n- **Watch:** Volume spikes above {coin['Volume(24h)']/1e6:.1f}M"
)
# 2. Medium-Risk Trades (Liquid Giants)
if not medium_risk.empty:
report.append("\n## 💎 MEDIUM RISK: Liquid Swing Trades (10-30% Potential)")
for i, coin in medium_risk.iterrows():
current_price = coin["Price"]
entry = current_price * 0.98 # -2% dip
stop_loss = current_price * 0.94 # -6%
take_profit = current_price * 1.15 # +15%
report.append(
f"\n### {coin['Name']} (Liquidity Score: {coin['Volume/Market Cap Ratio']:.1%})"
f"\n- **Current Price:** ${current_price:.2f}"
f"\n- **Entry:** < ${entry:.2f} (Buy slight dips)"
f"\n- **Stop-Loss:** ${stop_loss:.2f} (-6%)"
f"\n- **Target:** ${take_profit:.2f} (+15%)"
f"\n- **Hold Time:** 1-3 weeks"
f"\n- **Key Metric:** Volume/Cap > 15%"
)
# 3. Low-Risk Trades (Stable Momentum)
if not low_risk.empty:
report.append("\n## 🛡️ LOW RISK: Steady Gainers (5-15% Potential)")
for i, coin in low_risk.iterrows():
current_price = coin["Price"]
entry = current_price * 0.99 # -1% dip
stop_loss = current_price * 0.97 # -3%
take_profit = current_price * 1.10 # +10%
report.append(
f"\n### {coin['Name']} (Stability Score: {1/coin['Volatility Score']:.1f}x)"
f"\n- **Current Price:** ${current_price:.2f}"
f"\n- **Entry:** < ${entry:.2f} (Safe zone)"
f"\n- **Stop-Loss:** ${stop_loss:.2f} (-3%)"
f"\n- **Target:** ${take_profit:.2f} (+10%)"
f"\n- **DCA Suggestion:** 3 buys over 72 hours"
)
# Volume Anomaly Alert
anomalies = df[df["Volume Anomaly"]].sort_values("Volume(24h)", ascending=False).head(2)
if not anomalies.empty:
report.append("\n⚠️ **Volume Spike Alerts**")
for i, coin in anomalies.iterrows():
report.append(
f"- {coin['Name']}: Volume {coin['Volume(24h)']/1e6:.1f}M "
f"(3x normal) | Price moved: {coin['24h %']:.1%}"
)
# Pro Tip
report.append(
"\n📊 **Chart Hack:** Hide BTC in visuals:\n"
"```python\n"
"# For 3D Map:\n"
"fig.update_traces(visible=False, selector={'name':'Bitcoin'})\n"
"# For Treemap:\n"
"df = df[df['Name'] != 'Bitcoin']\n"
"```"
)
return "\n".join(report)
def create_visuals(self, df: pd.DataFrame) -> dict:
"""Enhanced visuals with BTC toggle support"""
# 3D Market Map (with BTC toggle hint)
fig1 = px.scatter_3d(
df,
x="Market Cap",
y="Volume/Market Cap Ratio",
z="Momentum Score",
color="Name", # Color by name to allow toggling
hover_name="Name",
title="Market Map (Toggle BTC in legend to focus on alts)",
log_x=True
)
fig1.update_traces(
marker=dict(size=df["Volatility Score"]*100 + 5) # Dynamic sizing
)
# Liquidity Tree (exclude BTC if too dominant)
if df[df["Name"] == "BitcoinBTC"]["Market Cap"].values[0] > df["Market Cap"].median() * 10:
df = df[df["Name"] != "BitcoinBTC"]
fig2 = px.treemap(
df,
path=["Name"],
values="Market Cap",
color="Volume/Market Cap Ratio",
title="Liquidity Tree (BTC auto-removed if dominant)"
)
return {"market_map": fig1, "liquidity_tree": fig2}
async def main():
"""
Main execution flow:
1. Configure headless browser for scraping
2. Extract live crypto market data
3. Clean and analyze using hedge fund models
4. Generate visualizations and insights
5. Output professional trading report
"""
# Configure browser with anti-detection features
browser_config = BrowserConfig(
headless=False,
)
# Initialize crawler with smart table detection
crawler = AsyncWebCrawler(config=browser_config)
await crawler.start()
try:
# Set up scraping parameters
crawl_config = CrawlerRunConfig(
cache_mode=CacheMode.BYPASS,
table_score_threshold=8, # Strict table detection
keep_data_attributes=True,
scraping_strategy=LXMLWebScrapingStrategy(),
scan_full_page=True,
scroll_delay=0.2,
)
# Execute market data extraction
results: List[CrawlResult] = await crawler.arun(
url="https://coinmarketcap.com/?page=1", config=crawl_config
)
# Process results
raw_df = pd.DataFrame()
for result in results:
# Use the new tables field, falling back to media["tables"] for backward compatibility
tables = result.tables if hasattr(result, "tables") and result.tables else result.media.get("tables", [])
if result.success and tables:
# Extract primary market table
# DataFrame
raw_df = pd.DataFrame(
tables[0]["rows"],
columns=tables[0]["headers"],
)
break
# This is for debugging only
# ////// Remove this in production from here..
# Save raw data for debugging
raw_df.to_csv(f"{__current_dir__}/tmp/raw_crypto_data.csv", index=False)
print("🔍 Raw data saved to 'raw_crypto_data.csv'")
# Read from file for debugging
raw_df = pd.read_csv(f"{__current_dir__}/tmp/raw_crypto_data.csv")
# ////// ..to here
# Select top 20
raw_df = raw_df.head(50)
# Remove "Buy" from name
raw_df["Name"] = raw_df["Name"].str.replace("Buy", "")
# Initialize analysis engine
analyzer = CryptoAlphaGenerator()
clean_df = analyzer.clean_data(raw_df)
analyzed_df = analyzer.calculate_metrics(clean_df)
# Generate outputs
visuals = analyzer.create_visuals(analyzed_df)
insights = analyzer.generate_insights(analyzed_df)
# Save visualizations
visuals["market_map"].write_html(f"{__current_dir__}/tmp/market_map.html")
visuals["liquidity_tree"].write_html(f"{__current_dir__}/tmp/liquidity_tree.html")
# Display results
print("🔑 Key Trading Insights:")
print(insights)
print("\n📊 Open 'market_map.html' for interactive analysis")
print("\n📊 Open 'liquidity_tree.html' for interactive analysis")
finally:
await crawler.close()
if __name__ == "__main__":
asyncio.run(main())