518 lines
17 KiB
Python
518 lines
17 KiB
Python
import os, sys
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
|
os.environ['FIRECRAWL_API_KEY'] = "fc-84b370ccfad44beabc686b38f1769692"
|
|
|
|
import asyncio
|
|
import time
|
|
import json
|
|
import re
|
|
from typing import Dict, List
|
|
from bs4 import BeautifulSoup
|
|
from pydantic import BaseModel, Field
|
|
from crawl4ai import AsyncWebCrawler, CacheMode, BrowserConfig, CrawlerRunConfig
|
|
from crawl4ai.markdown_generation_strategy import DefaultMarkdownGenerator
|
|
from crawl4ai.content_filter_strategy import BM25ContentFilter, PruningContentFilter
|
|
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy, LLMExtractionStrategy
|
|
|
|
__location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
|
|
|
print("Crawl4AI: Advanced Web Crawling and Data Extraction")
|
|
print("GitHub Repository: https://github.com/unclecode/crawl4ai")
|
|
print("Twitter: @unclecode")
|
|
print("Website: https://crawl4ai.com")
|
|
|
|
# Basic Example - Simple Crawl
|
|
async def simple_crawl():
|
|
print("\n--- Basic Usage ---")
|
|
browser_config = BrowserConfig(headless=True)
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.nbcnews.com/business",
|
|
config=crawler_config
|
|
)
|
|
print(result.markdown[:500])
|
|
|
|
# JavaScript Execution Example
|
|
async def simple_example_with_running_js_code():
|
|
print("\n--- Executing JavaScript and Using CSS Selectors ---")
|
|
|
|
browser_config = BrowserConfig(
|
|
headless=True,
|
|
java_script_enabled=True
|
|
)
|
|
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
js_code=["const loadMoreButton = Array.from(document.querySelectorAll('button')).find(button => button.textContent.includes('Load More')); loadMoreButton && loadMoreButton.click();"],
|
|
# wait_for="() => { return Array.from(document.querySelectorAll('article.tease-card')).length > 10; }"
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.nbcnews.com/business",
|
|
config=crawler_config
|
|
)
|
|
print(result.markdown[:500])
|
|
|
|
# CSS Selector Example
|
|
async def simple_example_with_css_selector():
|
|
print("\n--- Using CSS Selectors ---")
|
|
browser_config = BrowserConfig(headless=True)
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
css_selector=".wide-tease-item__description"
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.nbcnews.com/business",
|
|
config=crawler_config
|
|
)
|
|
print(result.markdown[:500])
|
|
|
|
# Proxy Example
|
|
async def use_proxy():
|
|
print("\n--- Using a Proxy ---")
|
|
browser_config = BrowserConfig(
|
|
headless=True,
|
|
proxy="http://your-proxy-url:port"
|
|
)
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.nbcnews.com/business",
|
|
config=crawler_config
|
|
)
|
|
if result.success:
|
|
print(result.markdown[:500])
|
|
|
|
# Screenshot Example
|
|
async def capture_and_save_screenshot(url: str, output_path: str):
|
|
browser_config = BrowserConfig(headless=True)
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
screenshot=True
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url=url,
|
|
config=crawler_config
|
|
)
|
|
|
|
if result.success and result.screenshot:
|
|
import base64
|
|
screenshot_data = base64.b64decode(result.screenshot)
|
|
with open(output_path, 'wb') as f:
|
|
f.write(screenshot_data)
|
|
print(f"Screenshot saved successfully to {output_path}")
|
|
else:
|
|
print("Failed to capture screenshot")
|
|
|
|
# LLM Extraction Example
|
|
class OpenAIModelFee(BaseModel):
|
|
model_name: str = Field(..., description="Name of the OpenAI model.")
|
|
input_fee: str = Field(..., description="Fee for input token for the OpenAI model.")
|
|
output_fee: str = Field(..., description="Fee for output token for the OpenAI model.")
|
|
|
|
async def extract_structured_data_using_llm(provider: str, api_token: str = None, extra_headers: Dict[str, str] = None):
|
|
print(f"\n--- Extracting Structured Data with {provider} ---")
|
|
|
|
if api_token is None and provider != "ollama":
|
|
print(f"API token is required for {provider}. Skipping this example.")
|
|
return
|
|
|
|
browser_config = BrowserConfig(headless=True)
|
|
|
|
extra_args = {
|
|
"temperature": 0,
|
|
"top_p": 0.9,
|
|
"max_tokens": 2000
|
|
}
|
|
if extra_headers:
|
|
extra_args["extra_headers"] = extra_headers
|
|
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
word_count_threshold=1,
|
|
page_timeout = 80000,
|
|
extraction_strategy=LLMExtractionStrategy(
|
|
provider=provider,
|
|
api_token=api_token,
|
|
schema=OpenAIModelFee.model_json_schema(),
|
|
extraction_type="schema",
|
|
instruction="""From the crawled content, extract all mentioned model names along with their fees for input and output tokens.
|
|
Do not miss any models in the entire content.""",
|
|
extra_args=extra_args
|
|
)
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://openai.com/api/pricing/",
|
|
config=crawler_config
|
|
)
|
|
print(result.extracted_content)
|
|
|
|
# CSS Extraction Example
|
|
async def extract_structured_data_using_css_extractor():
|
|
print("\n--- Using JsonCssExtractionStrategy for Fast Structured Output ---")
|
|
schema = {
|
|
"name": "KidoCode Courses",
|
|
"baseSelector": "section.charge-methodology .w-tab-content > div",
|
|
"fields": [
|
|
{
|
|
"name": "section_title",
|
|
"selector": "h3.heading-50",
|
|
"type": "text",
|
|
},
|
|
{
|
|
"name": "section_description",
|
|
"selector": ".charge-content",
|
|
"type": "text",
|
|
},
|
|
{
|
|
"name": "course_name",
|
|
"selector": ".text-block-93",
|
|
"type": "text",
|
|
},
|
|
{
|
|
"name": "course_description",
|
|
"selector": ".course-content-text",
|
|
"type": "text",
|
|
},
|
|
{
|
|
"name": "course_icon",
|
|
"selector": ".image-92",
|
|
"type": "attribute",
|
|
"attribute": "src"
|
|
}
|
|
]
|
|
}
|
|
|
|
browser_config = BrowserConfig(
|
|
headless=True,
|
|
java_script_enabled=True
|
|
)
|
|
|
|
js_click_tabs = """
|
|
(async () => {
|
|
const tabs = document.querySelectorAll("section.charge-methodology .tabs-menu-3 > div");
|
|
for(let tab of tabs) {
|
|
tab.scrollIntoView();
|
|
tab.click();
|
|
await new Promise(r => setTimeout(r, 500));
|
|
}
|
|
})();
|
|
"""
|
|
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
extraction_strategy=JsonCssExtractionStrategy(schema),
|
|
js_code=[js_click_tabs]
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.kidocode.com/degrees/technology",
|
|
config=crawler_config
|
|
)
|
|
|
|
companies = json.loads(result.extracted_content)
|
|
print(f"Successfully extracted {len(companies)} companies")
|
|
print(json.dumps(companies[0], indent=2))
|
|
|
|
# Dynamic Content Examples - Method 1
|
|
async def crawl_dynamic_content_pages_method_1():
|
|
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
|
|
first_commit = ""
|
|
|
|
async def on_execution_started(page, **kwargs):
|
|
nonlocal first_commit
|
|
try:
|
|
while True:
|
|
await page.wait_for_selector("li.Box-sc-g0xbh4-0 h4")
|
|
commit = await page.query_selector("li.Box-sc-g0xbh4-0 h4")
|
|
commit = await commit.evaluate("(element) => element.textContent")
|
|
commit = re.sub(r"\s+", "", commit)
|
|
if commit and commit != first_commit:
|
|
first_commit = commit
|
|
break
|
|
await asyncio.sleep(0.5)
|
|
except Exception as e:
|
|
print(f"Warning: New content didn't appear after JavaScript execution: {e}")
|
|
|
|
browser_config = BrowserConfig(
|
|
headless=False,
|
|
java_script_enabled=True
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
crawler.crawler_strategy.set_hook("on_execution_started", on_execution_started)
|
|
|
|
url = "https://github.com/microsoft/TypeScript/commits/main"
|
|
session_id = "typescript_commits_session"
|
|
all_commits = []
|
|
|
|
js_next_page = """
|
|
const button = document.querySelector('a[data-testid="pagination-next-button"]');
|
|
if (button) button.click();
|
|
"""
|
|
|
|
for page in range(3):
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
css_selector="li.Box-sc-g0xbh4-0",
|
|
js_code=js_next_page if page > 0 else None,
|
|
js_only=page > 0,
|
|
session_id=session_id
|
|
)
|
|
|
|
result = await crawler.arun(url=url, config=crawler_config)
|
|
assert result.success, f"Failed to crawl page {page + 1}"
|
|
|
|
soup = BeautifulSoup(result.cleaned_html, "html.parser")
|
|
commits = soup.select("li")
|
|
all_commits.extend(commits)
|
|
|
|
print(f"Page {page + 1}: Found {len(commits)} commits")
|
|
|
|
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
|
|
|
|
# Dynamic Content Examples - Method 2
|
|
async def crawl_dynamic_content_pages_method_2():
|
|
print("\n--- Advanced Multi-Page Crawling with JavaScript Execution ---")
|
|
|
|
browser_config = BrowserConfig(
|
|
headless=False,
|
|
java_script_enabled=True
|
|
)
|
|
|
|
js_next_page_and_wait = """
|
|
(async () => {
|
|
const getCurrentCommit = () => {
|
|
const commits = document.querySelectorAll('li.Box-sc-g0xbh4-0 h4');
|
|
return commits.length > 0 ? commits[0].textContent.trim() : null;
|
|
};
|
|
|
|
const initialCommit = getCurrentCommit();
|
|
const button = document.querySelector('a[data-testid="pagination-next-button"]');
|
|
if (button) button.click();
|
|
|
|
while (true) {
|
|
await new Promise(resolve => setTimeout(resolve, 100));
|
|
const newCommit = getCurrentCommit();
|
|
if (newCommit && newCommit !== initialCommit) {
|
|
break;
|
|
}
|
|
}
|
|
})();
|
|
"""
|
|
|
|
schema = {
|
|
"name": "Commit Extractor",
|
|
"baseSelector": "li.Box-sc-g0xbh4-0",
|
|
"fields": [
|
|
{
|
|
"name": "title",
|
|
"selector": "h4.markdown-title",
|
|
"type": "text",
|
|
"transform": "strip",
|
|
},
|
|
],
|
|
}
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
url = "https://github.com/microsoft/TypeScript/commits/main"
|
|
session_id = "typescript_commits_session"
|
|
all_commits = []
|
|
|
|
extraction_strategy = JsonCssExtractionStrategy(schema)
|
|
|
|
for page in range(3):
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
css_selector="li.Box-sc-g0xbh4-0",
|
|
extraction_strategy=extraction_strategy,
|
|
js_code=js_next_page_and_wait if page > 0 else None,
|
|
js_only=page > 0,
|
|
session_id=session_id
|
|
)
|
|
|
|
result = await crawler.arun(url=url, config=crawler_config)
|
|
assert result.success, f"Failed to crawl page {page + 1}"
|
|
|
|
commits = json.loads(result.extracted_content)
|
|
all_commits.extend(commits)
|
|
print(f"Page {page + 1}: Found {len(commits)} commits")
|
|
|
|
print(f"Successfully crawled {len(all_commits)} commits across 3 pages")
|
|
|
|
# Browser Comparison
|
|
async def crawl_custom_browser_type():
|
|
print("\n--- Browser Comparison ---")
|
|
|
|
# Firefox
|
|
browser_config_firefox = BrowserConfig(
|
|
browser_type="firefox",
|
|
headless=True
|
|
)
|
|
start = time.time()
|
|
async with AsyncWebCrawler(config=browser_config_firefox) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.example.com",
|
|
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
|
|
)
|
|
print("Firefox:", time.time() - start)
|
|
print(result.markdown[:500])
|
|
|
|
# WebKit
|
|
browser_config_webkit = BrowserConfig(
|
|
browser_type="webkit",
|
|
headless=True
|
|
)
|
|
start = time.time()
|
|
async with AsyncWebCrawler(config=browser_config_webkit) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.example.com",
|
|
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
|
|
)
|
|
print("WebKit:", time.time() - start)
|
|
print(result.markdown[:500])
|
|
|
|
# Chromium (default)
|
|
browser_config_chromium = BrowserConfig(
|
|
browser_type="chromium",
|
|
headless=True
|
|
)
|
|
start = time.time()
|
|
async with AsyncWebCrawler(config=browser_config_chromium) as crawler:
|
|
result = await crawler.arun(
|
|
url="https://www.example.com",
|
|
config=CrawlerRunConfig(cache_mode=CacheMode.BYPASS)
|
|
)
|
|
print("Chromium:", time.time() - start)
|
|
print(result.markdown[:500])
|
|
|
|
# Anti-Bot and User Simulation
|
|
async def crawl_with_user_simulation():
|
|
browser_config = BrowserConfig(
|
|
headless=True,
|
|
user_agent_mode="random",
|
|
user_agent_generator_config={
|
|
"device_type": "mobile",
|
|
"os_type": "android"
|
|
}
|
|
)
|
|
|
|
crawler_config = CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
magic=True,
|
|
simulate_user=True,
|
|
override_navigator=True
|
|
)
|
|
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
result = await crawler.arun(
|
|
url="YOUR-URL-HERE",
|
|
config=crawler_config
|
|
)
|
|
print(result.markdown)
|
|
|
|
# Speed Comparison
|
|
async def speed_comparison():
|
|
print("\n--- Speed Comparison ---")
|
|
|
|
# Firecrawl comparison
|
|
from firecrawl import FirecrawlApp
|
|
app = FirecrawlApp(api_key=os.environ['FIRECRAWL_API_KEY'])
|
|
start = time.time()
|
|
scrape_status = app.scrape_url(
|
|
'https://www.nbcnews.com/business',
|
|
params={'formats': ['markdown', 'html']}
|
|
)
|
|
end = time.time()
|
|
print("Firecrawl:")
|
|
print(f"Time taken: {end - start:.2f} seconds")
|
|
print(f"Content length: {len(scrape_status['markdown'])} characters")
|
|
print(f"Images found: {scrape_status['markdown'].count('cldnry.s-nbcnews.com')}")
|
|
print()
|
|
|
|
# Crawl4AI comparisons
|
|
browser_config = BrowserConfig(headless=True)
|
|
|
|
# Simple crawl
|
|
async with AsyncWebCrawler(config=browser_config) as crawler:
|
|
start = time.time()
|
|
result = await crawler.arun(
|
|
url="https://www.nbcnews.com/business",
|
|
config=CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
word_count_threshold=0
|
|
)
|
|
)
|
|
end = time.time()
|
|
print("Crawl4AI (simple crawl):")
|
|
print(f"Time taken: {end - start:.2f} seconds")
|
|
print(f"Content length: {len(result.markdown)} characters")
|
|
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
|
|
print()
|
|
|
|
# Advanced filtering
|
|
start = time.time()
|
|
result = await crawler.arun(
|
|
url="https://www.nbcnews.com/business",
|
|
config=CrawlerRunConfig(
|
|
cache_mode=CacheMode.BYPASS,
|
|
word_count_threshold=0,
|
|
markdown_generator=DefaultMarkdownGenerator(
|
|
content_filter=PruningContentFilter(
|
|
threshold=0.48,
|
|
threshold_type="fixed",
|
|
min_word_threshold=0
|
|
)
|
|
)
|
|
)
|
|
)
|
|
end = time.time()
|
|
print("Crawl4AI (Markdown Plus):")
|
|
print(f"Time taken: {end - start:.2f} seconds")
|
|
print(f"Content length: {len(result.markdown_v2.raw_markdown)} characters")
|
|
print(f"Fit Markdown: {len(result.markdown_v2.fit_markdown)} characters")
|
|
print(f"Images found: {result.markdown.count('cldnry.s-nbcnews.com')}")
|
|
print()
|
|
|
|
# Main execution
|
|
async def main():
|
|
# Basic examples
|
|
# await simple_crawl()
|
|
# await simple_example_with_running_js_code()
|
|
# await simple_example_with_css_selector()
|
|
|
|
# Advanced examples
|
|
# await extract_structured_data_using_css_extractor()
|
|
await extract_structured_data_using_llm("openai/gpt-4o", os.getenv("OPENAI_API_KEY"))
|
|
# await crawl_dynamic_content_pages_method_1()
|
|
# await crawl_dynamic_content_pages_method_2()
|
|
|
|
# Browser comparisons
|
|
# await crawl_custom_browser_type()
|
|
|
|
# Performance testing
|
|
# await speed_comparison()
|
|
|
|
# Screenshot example
|
|
# await capture_and_save_screenshot(
|
|
# "https://www.example.com",
|
|
# os.path.join(__location__, "tmp/example_screenshot.jpg")
|
|
# )
|
|
|
|
if __name__ == "__main__":
|
|
asyncio.run(main()) |