Please read the section to understand how to set up application default Credentials to [GCP docs](https://cloud.google.com/docs/authentication/provide-credentials-adc#how-to).
Default GCP Role which contains these permissions [roles/aiplatform.viewer](https://cloud.google.com/vertex-ai/docs/general/access-control#aiplatform.viewer)
1. Setup a ServiceAccount as per [GCP docs](https://cloud.google.com/iam/docs/creating-managing-service-accounts#iam-service-accounts-create-console) and assign the previously created role to this service account.
| [`Model`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.Model) | [`MlModelGroup`](https://docs.datahub.com/docs/generated/metamodel/entities/mlmodelgroup/) | The name of a Model Group is the same as Model's name. Model serve as containers for multiple versions of the same model in Vertex AI. |
| [`Model Version`](https://cloud.google.com/vertex-ai/docs/model-registry/versioning) | [`MlModel`](https://docs.datahub.com/docs/generated/metamodel/entities/mlmodel/) | The name of a Model is `{model_name}_{model_version}` (e.g. my_vertexai_model_1 for model registered to Model Registry or Deployed to Endpoint. Each Model Version represents a specific iteration of a model with its own metadata. |
| Dataset <br/><br/> | [`Dataset`](https://docs.datahub.com/docs/generated/metamodel/entities/dataset) | A Managed Dataset resource in Vertex AI is mapped to Dataset in DataHub. <br></br> Supported types of datasets include ([`Text`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.TextDataset), [`Tabular`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.TabularDataset), [`Image Dataset`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.ImageDataset), [`Video`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.VideoDataset), [`TimeSeries`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.TimeSeriesDataset)) |
| [`Training Job`](https://cloud.google.com/vertex-ai/docs/beginner/beginners-guide) | [`DataProcessInstance`](https://docs.datahub.com/docs/generated/metamodel/entities/dataprocessinstance/) | A Training Job is mapped as DataProcessInstance in DataHub. <br></br> Supported types of training jobs include ([`AutoMLTextTrainingJob`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.AutoMLTextTrainingJob), [`AutoMLTabularTrainingJob`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.AutoMLTabularTrainingJob), [`AutoMLImageTrainingJob`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.AutoMLImageTrainingJob), [`AutoMLVideoTrainingJob`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.AutoMLVideoTrainingJob), [`AutoMLForecastingTrainingJob`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.AutoMLForecastingTrainingJob), [`Custom Job`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.CustomJob), [`Custom TrainingJob`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.CustomTrainingJob), [`Custom Container TrainingJob`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.CustomContainerTrainingJob), [`Custom Python Packaging Job`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.CustomPythonPackageTrainingJob) ) |
| [`Experiment`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.Experiment) | [`Container`](https://docs.datahub.com/docs/generated/metamodel/entities/container/) | Experiments organize related runs and serve as logical groupings for model development iterations. Each Experiment is mapped to a Container in DataHub. |
| [`Experiment Run`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.ExperimentRun) | [`DataProcessInstance`](https://docs.datahub.com/docs/generated/metamodel/entities/dataprocessinstance/) | An Experiment Run represents a single execution of a ML workflow. An Experiment Run tracks ML parameters, metricis, artifacts and metadata |
| [`Execution`](https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform.Execution) | [`DataProcessInstance`](https://docs.datahub.com/docs/generated/metamodel/entities/dataprocessinstance/) | Metadata Execution resource for Vertex AI. Metadata Execution is started in a experiment run and captures input and output artifacts. |