datahub/metadata-ingestion/examples/airflow/generic_recipe_sample_dag.py

53 lines
1.3 KiB
Python
Raw Normal View History

"""Generic DataHub Ingest via Recipe
This example demonstrates how to load any configuration file and run a
DataHub ingestion pipeline within an Airflow DAG.
"""
from datetime import timedelta
import yaml
from airflow import DAG
try:
from airflow.operators.python import PythonOperator
except ImportError:
from airflow.operators.python_operator import PythonOperator
from airflow.utils.dates import days_ago
from datahub.ingestion.run.pipeline import Pipeline
default_args = {
"owner": "airflow",
"depends_on_past": False,
"email": ["jdoe@example.com"],
"email_on_failure": False,
"email_on_retry": False,
"retries": 1,
"retry_delay": timedelta(minutes=5),
"execution_timeout": timedelta(minutes=120),
}
def datahub_recipe():
with open("path/to/recipe.yml") as config_file:
config = yaml.safe_load(config_file)
pipeline = Pipeline.create(config)
pipeline.run()
pipeline.raise_from_status()
with DAG(
"datahub_ingest_using_recipe",
default_args=default_args,
description="An example DAG which runs a DataHub ingestion recipe",
schedule_interval=timedelta(days=1),
start_date=days_ago(2),
catchup=False,
) as dag:
ingest_task = PythonOperator(
task_id="ingest_using_recipe",
python_callable=datahub_recipe,
)