The server release notes can be found in [github releases](https://github.com/datahub-project/datahub/releases). These releases are done approximately every week on a regular cadence unless a blocking issue or regression is discovered.
CLI release is made through a different repository and release notes can be found in [acryldata releases](https://github.com/acryldata/datahub/releases). At least one release which is tied to the server release is always made alongwith the server release. Multiple other bigfix releases are made in between based on amount of fixes that are merged between the server release mentioned above.
If server with version `0.8.28` is being used then CLI used to connect to it should be `0.8.28.x`. Tests of new CLI are not ran with older server versions so it is not recommended to update the CLI if the server is not updated.
We recommend python virtual environments (venv-s) to namespace pip modules. The folks over at [Acryl Data](https://www.acryl.io/) maintain a PyPI package for DataHub metadata ingestion. Here's an example setup:
python3 -m venv datahub-env # create the environment
source datahub-env/bin/activate # activate the environment
```
**_NOTE:_** If you install `datahub` in a virtual environment, that same virtual environment must be re-activated each time a shell window or session is created.
Once inside the virtual environment, install `datahub` using the following commands
If you don't want to install locally, you can alternatively run metadata ingestion within a Docker container.
We have prebuilt images available on [Docker hub](https://hub.docker.com/r/linkedin/datahub-ingestion). All plugins will be installed and enabled automatically.
You can use the `datahub-ingestion` docker image as explained in [Docker Images](../docker/README.md). In case you are using Kubernetes you can start a pod with the `datahub-ingestion` docker image, log onto a shell on the pod and you should have the access to datahub CLI in your kubernetes cluster.
_Limitation: the datahub_docker.sh convenience script assumes that the recipe and any input/output files are accessible in the current working directory or its subdirectories. Files outside the current working directory will not be found, and you'll need to invoke the Docker image directly._
If you'd like to install from source, see the [developer guide](../metadata-ingestion/developing.md).
## Installing Plugins
We use a plugin architecture so that you can install only the dependencies you actually need. Click the plugin name to learn more about the specific source recipe and any FAQs!
The env variables take precedence over what is in the DataHub CLI config created through `init` command. The list of supported environment variables are as follows
-`DATAHUB_SKIP_CONFIG` (default `false`) - Set to `true` to skip creating the configuration file.
-`DATAHUB_GMS_TOKEN` (default `None`) - Used for communicating with DataHub Cloud.
-`DATAHUB_TELEMETRY_ENABLED` (default `true`) - Set to `false` to disable telemetry. If CLI is being run in an environment with no access to public internet then this should be disabled.
-`DATAHUB_TELEMETRY_TIMEOUT` (default `10`) - Set to a custom integer value to specify timeout in secs when sending telemetry.
-`DATAHUB_DEBUG` (default `false`) - Set to `true` to enable debug logging for CLI. Can also be achieved through `--debug` option of the CLI.
-`DATAHUB_VERSION` (default `head`) - Set to a specific version to run quickstart with the particular version of docker images.
-`ACTIONS_VERSION` (default `head`) - Set to a specific version to run quickstart with that image tag of `datahub-actions` container.
The `datahub` cli allows you to do many things, such as quickstarting a DataHub docker instance locally, ingesting metadata from your sources, as well as retrieving and modifying metadata.
Like most command line tools, `--help` is your best friend. Use it to discover the capabilities of the cli and the different commands and sub-commands that are supported.
The following top-level commands listed below are here mainly to give the reader a high-level picture of what are the kinds of things you can accomplish with the cli.
We've ordered them roughly in the order we expect you to interact with these commands as you get deeper into the `datahub`-verse.
The `docker` command allows you to start up a local DataHub instance using `datahub docker quickstart`. You can also check if the docker cluster is healthy using `datahub docker check`.
The `ingest` command allows you to ingest metadata from your sources using ingestion configuration files, which we call recipes. [Removing Metadata from DataHub](./how/delete-metadata.md) contains detailed instructions about how you can use the ingest command to perform operations like rolling-back previously ingested metadata through the `rollback` sub-command and listing all runs that happened through `list-runs` sub-command.
The code responsible for collecting and broadcasting these events is open-source and can be found [within our GitHub](https://github.com/datahub-project/datahub/blob/master/metadata-ingestion/src/datahub/telemetry/telemetry.py).
The `delete` command allows you to delete metadata from DataHub. Read this [guide](./how/delete-metadata.md) to understand how you can delete metadata from DataHub.
The `get` command allows you to easily retrieve metadata from DataHub, by using the REST API. This works for both versioned aspects and timeseries aspects. For timeseries aspects, it fetches the latest value.
The `put` command allows you to write metadata into DataHub. This is a flexible way for you to issue edits to metadata from the command line.
For example, the following command instructs `datahub` to set the `ownership` aspect of the dataset `urn:li:dataset:(urn:li:dataPlatform:hive,SampleHiveDataset,PROD)` to the value in the file `ownership.json`.
The JSON in the `ownership.json` file needs to conform to the [`Ownership`](https://github.com/datahub-project/datahub/blob/master/metadata-models/src/main/pegasus/com/linkedin/common/Ownership.pdl) Aspect model as shown below.
The `dataplatform2instance` migration command allows you to migrate your entities from an instance-agnostic platform identifier to an instance-specific platform identifier. If you have ingested metadata in the past for this platform and would like to transfer any important metadata over to the new instance-specific entities, then you should use this command. For example, if your users have added documentation or added tags or terms to your datasets, then you should run this command to transfer this metadata over to the new entities. For further context, read the Platform Instance Guide [here](./platform-instances.md).
A few important options worth calling out:
- --dry-run / -n : Use this to get a report for what will be migrated before running
- --force / -F : Use this if you know what you are doing and do not want to get a confirmation prompt before migration is started
- --keep : When enabled, will preserve the old entities and not delete them. Default behavior is to soft-delete old entities.
- --hard : When enabled, will hard-delete the old entities.
**_Note_**: Timeseries aspects such as Usage Statistics and Dataset Profiles are not migrated over to the new entity instances, you will get new data points created when you re-run ingestion using the `usage` or sources with profiling turned on.
Will migrate 4 urns such as ['urn:li:dataset:(urn:li:dataPlatform:hive,SampleHiveDataset,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,SampleHiveDataset,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,fct_users_deleted,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,logging_events,PROD)']
New urns will look like ['urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.logging_events,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.fct_users_created,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.SampleHiveDataset,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.fct_users_deleted,PROD)']
Ok to proceed? [y/N]:
...
Migration Report:
--------------
Migration Run Id: migrate-f5ae7201-4548-4bee-aed4-35758bb78c89
Num entities created = 4
Num entities affected = 0
Num entities migrated = 4
Details:
New Entities Created: {'urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.SampleHiveDataset,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.fct_users_deleted,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.logging_events,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,warehouse.fct_users_created,PROD)'}
External Entities Affected: None
Old Entities Migrated = {'urn:li:dataset:(urn:li:dataPlatform:hive,logging_events,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,SampleHiveDataset,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,fct_users_deleted,PROD)', 'urn:li:dataset:(urn:li:dataPlatform:hive,fct_users_created,PROD)'}
The `timeline` command allows you to view a version history for entities. Currently only supported for Datasets. For example,
the following command will show you the modifications to tags for a dataset for the past week. The output includes a computed semantic version,
relevant for schema changes only currently, the target of the modification, and a description of the change including a timestamp.
The default output is sanitized to be more readable, but the full API output can be obtained by passing the `--verbose` flag and
to get the raw JSON difference in addition to the API output you can add the `--raw` flag. For more details about the feature please see [the main feature page](dev-guides/timeline.md)
```console
datahub timeline --urn "urn:li:dataset:(urn:li:dataPlatform:mysql,User.UserAccount,PROD)" --category TAG --start 7daysago
2022-02-17 14:03:42 - 0.0.0-computed
MODIFY TAG dataset:mysql:User.UserAccount : A change in aspect editableSchemaMetadata happened at time 2022-02-17 20:03:42.0
2022-02-17 14:17:30 - 0.0.0-computed
MODIFY TAG dataset:mysql:User.UserAccount : A change in aspect editableSchemaMetadata happened at time 2022-02-17 20:17:30.118