datahub/metadata-ingestion/tests/unit/test_transform_dataset.py

4577 lines
159 KiB
Python
Raw Normal View History

import json
import re
from datetime import datetime, timezone
from typing import (
Any,
Callable,
Dict,
List,
MutableSequence,
Optional,
Type,
Union,
cast,
)
from unittest import mock
from uuid import uuid4
import pytest
import datahub.emitter.mce_builder as builder
import datahub.metadata.schema_classes as models
import tests.test_helpers.mce_helpers
from datahub.configuration.common import TransformerSemantics
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.ingestion.api import workunit
from datahub.ingestion.api.common import EndOfStream, PipelineContext, RecordEnvelope
from datahub.ingestion.graph.client import DatahubClientConfig, DataHubGraph
from datahub.ingestion.run.pipeline import Pipeline
from datahub.ingestion.transformer.add_dataset_browse_path import (
AddDatasetBrowsePathTransformer,
)
from datahub.ingestion.transformer.add_dataset_dataproduct import (
AddDatasetDataProduct,
PatternAddDatasetDataProduct,
SimpleAddDatasetDataProduct,
)
from datahub.ingestion.transformer.add_dataset_ownership import (
AddDatasetOwnership,
PatternAddDatasetOwnership,
SimpleAddDatasetOwnership,
)
from datahub.ingestion.transformer.add_dataset_properties import (
AddDatasetProperties,
AddDatasetPropertiesResolverBase,
SimpleAddDatasetProperties,
)
from datahub.ingestion.transformer.add_dataset_schema_tags import (
PatternAddDatasetSchemaTags,
)
from datahub.ingestion.transformer.add_dataset_schema_terms import (
PatternAddDatasetSchemaTerms,
)
from datahub.ingestion.transformer.add_dataset_tags import (
AddDatasetTags,
PatternAddDatasetTags,
SimpleAddDatasetTags,
)
from datahub.ingestion.transformer.add_dataset_terms import (
PatternAddDatasetTerms,
SimpleAddDatasetTerms,
)
from datahub.ingestion.transformer.base_transformer import (
BaseTransformer,
SingleAspectTransformer,
)
from datahub.ingestion.transformer.dataset_domain import (
PatternAddDatasetDomain,
SimpleAddDatasetDomain,
)
from datahub.ingestion.transformer.dataset_domain_based_on_tags import (
DatasetTagDomainMapper,
)
from datahub.ingestion.transformer.dataset_transformer import (
ContainerTransformer,
DatasetTransformer,
TagTransformer,
)
from datahub.ingestion.transformer.extract_dataset_tags import ExtractDatasetTags
from datahub.ingestion.transformer.extract_ownership_from_tags import (
ExtractOwnersFromTagsTransformer,
)
from datahub.ingestion.transformer.mark_dataset_status import MarkDatasetStatus
from datahub.ingestion.transformer.pattern_cleanup_dataset_usage_user import (
PatternCleanupDatasetUsageUser,
)
from datahub.ingestion.transformer.pattern_cleanup_ownership import (
PatternCleanUpOwnership,
)
from datahub.ingestion.transformer.remove_dataset_ownership import (
SimpleRemoveDatasetOwnership,
)
from datahub.ingestion.transformer.replace_external_url import (
ReplaceExternalUrlContainer,
ReplaceExternalUrlDataset,
)
from datahub.ingestion.transformer.tags_to_terms import TagsToTermMapper
from datahub.metadata.schema_classes import (
BrowsePathsClass,
DatasetPropertiesClass,
DatasetUserUsageCountsClass,
GlobalTagsClass,
MetadataChangeEventClass,
OwnershipClass,
OwnershipTypeClass,
StatusClass,
TagAssociationClass,
)
from datahub.utilities.urns.dataset_urn import DatasetUrn
from datahub.utilities.urns.urn import Urn
def make_generic_dataset(
entity_urn: str = "urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)",
aspects: Optional[List[Any]] = None,
) -> models.MetadataChangeEventClass:
if aspects is None:
# Default to a status aspect if none is provided.
aspects = [models.StatusClass(removed=False)]
return models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn=entity_urn,
aspects=aspects,
),
)
def make_generic_dataset_mcp(
entity_urn: str = "urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)",
aspect_name: str = "status",
aspect: Any = models.StatusClass(removed=False),
) -> MetadataChangeProposalWrapper:
return MetadataChangeProposalWrapper(
entityUrn=entity_urn,
entityType=Urn.create_from_string(entity_urn).get_type(),
aspectName=aspect_name,
changeType="UPSERT",
aspect=aspect,
)
def make_generic_container_mcp(
entity_urn: str = "urn:li:container:6338f55439c7ae58243a62c4d6fbffeee",
aspect_name: str = "status",
aspect: Any = None,
) -> MetadataChangeProposalWrapper:
if aspect is None:
aspect = models.StatusClass(removed=False)
return MetadataChangeProposalWrapper(
entityUrn=entity_urn,
entityType=Urn.create_from_string(entity_urn).get_type(),
aspectName=aspect_name,
changeType="UPSERT",
aspect=aspect,
)
def create_and_run_test_pipeline(
events: List[Union[MetadataChangeEventClass, MetadataChangeProposalWrapper]],
transformers: List[Dict[str, Any]],
path: str,
) -> str:
with mock.patch(
"tests.unit.test_source.FakeSource.get_workunits"
) as mock_getworkunits:
mock_getworkunits.return_value = [
(
workunit.MetadataWorkUnit(
id=f"test-workunit-mce-{e.proposedSnapshot.urn}", mce=e
)
if isinstance(e, MetadataChangeEventClass)
else workunit.MetadataWorkUnit(
id=f"test-workunit-mcp-{e.entityUrn}-{e.aspectName}", mcp=e
)
)
for e in events
]
events_file = f"{path}/{str(uuid4())}.json"
pipeline = Pipeline.create(
config_dict={
"source": {
"type": "tests.unit.test_source.FakeSource",
"config": {},
},
"transformers": transformers,
"sink": {"type": "file", "config": {"filename": events_file}},
}
)
pipeline.run()
pipeline.raise_from_status()
return events_file
def make_dataset_with_owner() -> models.MetadataChangeEventClass:
return models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)",
aspects=[
models.OwnershipClass(
owners=[
models.OwnerClass(
owner=builder.make_user_urn("fake_owner"),
type=models.OwnershipTypeClass.DATAOWNER,
),
],
lastModified=models.AuditStampClass(
time=1625266033123, actor="urn:li:corpuser:datahub"
),
)
],
),
)
EXISTING_PROPERTIES = {"my_existing_property": "existing property value"}
def make_dataset_with_properties() -> models.MetadataChangeEventClass:
return models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)",
aspects=[
models.StatusClass(removed=False),
models.DatasetPropertiesClass(
customProperties=EXISTING_PROPERTIES.copy()
),
],
),
)
def test_simple_dataset_ownership_transformation(mock_time):
no_owner_aspect = make_generic_dataset()
with_owner_aspect = make_dataset_with_owner()
not_a_dataset = models.MetadataChangeEventClass(
proposedSnapshot=models.DataJobSnapshotClass(
urn="urn:li:dataJob:(urn:li:dataFlow:(airflow,dag_abc,PROD),task_456)",
aspects=[
models.DataJobInfoClass(
name="User Deletions",
description="Constructs the fct_users_deleted from logging_events",
type=models.AzkabanJobTypeClass.SQL,
)
],
)
)
inputs = [no_owner_aspect, with_owner_aspect, not_a_dataset, EndOfStream()]
transformer = SimpleAddDatasetOwnership.create(
{
"owner_urns": [
builder.make_user_urn("person1"),
builder.make_user_urn("person2"),
]
},
PipelineContext(run_id="test"),
)
outputs = list(
transformer.transform([RecordEnvelope(input, metadata={}) for input in inputs])
)
assert len(outputs) == len(inputs) + 1
# Check the first entry.
first_ownership_aspect = builder.get_aspect_if_available(
outputs[0].record, models.OwnershipClass
)
assert first_ownership_aspect is None
last_event = outputs[3].record
assert isinstance(last_event, MetadataChangeProposalWrapper)
assert isinstance(last_event.aspect, OwnershipClass)
assert len(last_event.aspect.owners) == 2
assert last_event.entityUrn == outputs[0].record.proposedSnapshot.urn
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER and owner.typeUrn is None
for owner in last_event.aspect.owners
]
)
# Check the second entry.
second_ownership_aspect = builder.get_aspect_if_available(
outputs[1].record, models.OwnershipClass
)
assert second_ownership_aspect
assert len(second_ownership_aspect.owners) == 3
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER and owner.typeUrn is None
for owner in second_ownership_aspect.owners
]
)
# Verify that the third entry is unchanged.
assert inputs[2] == outputs[2].record
# Verify that the last entry is EndOfStream
assert inputs[3] == outputs[4].record
def test_simple_dataset_ownership_with_type_transformation(mock_time):
input = make_generic_dataset()
transformer = SimpleAddDatasetOwnership.create(
{
"owner_urns": [
builder.make_user_urn("person1"),
],
"ownership_type": "PRODUCER",
},
PipelineContext(run_id="test"),
)
output = list(
transformer.transform(
[
RecordEnvelope(input, metadata={}),
RecordEnvelope(EndOfStream(), metadata={}),
]
)
)
assert len(output) == 3
# original MCE is unchanged
assert input == output[0].record
ownership_aspect = output[1].record.aspect
assert isinstance(ownership_aspect, OwnershipClass)
assert len(ownership_aspect.owners) == 1
assert ownership_aspect.owners[0].type == models.OwnershipTypeClass.PRODUCER
def test_simple_dataset_ownership_with_type_urn_transformation(mock_time):
input = make_generic_dataset()
transformer = SimpleAddDatasetOwnership.create(
{
"owner_urns": [
builder.make_user_urn("person1"),
],
"ownership_type": "urn:li:ownershipType:__system__technical_owner",
},
PipelineContext(run_id="test"),
)
output = list(
transformer.transform(
[
RecordEnvelope(input, metadata={}),
RecordEnvelope(EndOfStream(), metadata={}),
]
)
)
assert len(output) == 3
# original MCE is unchanged
assert input == output[0].record
ownership_aspect = output[1].record.aspect
assert isinstance(ownership_aspect, OwnershipClass)
assert len(ownership_aspect.owners) == 1
assert ownership_aspect.owners[0].type == OwnershipTypeClass.CUSTOM
assert (
ownership_aspect.owners[0].typeUrn
== "urn:li:ownershipType:__system__technical_owner"
)
def _test_extract_tags(in_urn: str, regex_str: str, out_tag: str) -> None:
input = make_generic_dataset(entity_urn=in_urn)
transformer = ExtractDatasetTags.create(
{
"extract_tags_from": "urn",
"extract_tags_regex": regex_str,
"semantics": "overwrite",
},
PipelineContext(run_id="test"),
)
output = list(
transformer.transform(
[
RecordEnvelope(input, metadata={}),
RecordEnvelope(EndOfStream(), metadata={}),
]
)
)
assert len(output) == 3
assert output[0].record == input
tags_aspect = output[1].record.aspect
assert isinstance(tags_aspect, GlobalTagsClass)
assert len(tags_aspect.tags) == 1
assert tags_aspect.tags[0].tag == out_tag
def test_extract_dataset_tags(mock_time):
_test_extract_tags(
in_urn="urn:li:dataset:(urn:li:dataPlatform:kafka,clusterid.part1-part2-part3_part4,PROD)",
regex_str="(.*)",
out_tag="urn:li:tag:clusterid.part1-part2-part3_part4",
)
_test_extract_tags(
in_urn="urn:li:dataset:(urn:li:dataPlatform:kafka,clusterid.USA-ops-team_table1,PROD)",
regex_str=".([^._]*)_",
out_tag="urn:li:tag:USA-ops-team",
)
_test_extract_tags(
in_urn="urn:li:dataset:(urn:li:dataPlatform:kafka,clusterid.Canada-marketing_table1,PROD)",
regex_str=".([^._]*)_",
out_tag="urn:li:tag:Canada-marketing",
)
_test_extract_tags(
in_urn="urn:li:dataset:(urn:li:dataPlatform:elasticsearch,abcdef-prefix_datahub_usage_event-000027,PROD)",
regex_str="([^._]*)_",
out_tag="urn:li:tag:abcdef-prefix",
)
def test_simple_dataset_ownership_with_invalid_type_transformation(mock_time):
with pytest.raises(ValueError):
SimpleAddDatasetOwnership.create(
{
"owner_urns": [
builder.make_user_urn("person1"),
],
"ownership_type": "INVALID_TYPE",
},
PipelineContext(run_id="test"),
)
def test_simple_remove_dataset_ownership():
with_owner_aspect = make_dataset_with_owner()
transformer = SimpleRemoveDatasetOwnership.create(
{},
PipelineContext(run_id="test"),
)
outputs = list(
transformer.transform([RecordEnvelope(with_owner_aspect, metadata={})])
)
ownership_aspect = builder.get_aspect_if_available(
outputs[0].record, models.OwnershipClass
)
assert ownership_aspect
assert len(ownership_aspect.owners) == 0
def test_mark_status_dataset(tmp_path):
dataset = make_generic_dataset()
transformer = MarkDatasetStatus.create(
{"removed": True},
PipelineContext(run_id="test"),
)
removed = list(
transformer.transform(
[
RecordEnvelope(dataset, metadata={}),
]
)
)
assert len(removed) == 1
status_aspect = builder.get_aspect_if_available(
removed[0].record, models.StatusClass
)
assert status_aspect
assert status_aspect.removed is True
transformer = MarkDatasetStatus.create(
{"removed": False},
PipelineContext(run_id="test"),
)
not_removed = list(
transformer.transform(
[
RecordEnvelope(dataset, metadata={}),
]
)
)
assert len(not_removed) == 1
status_aspect = builder.get_aspect_if_available(
not_removed[0].record, models.StatusClass
)
assert status_aspect
assert status_aspect.removed is False
mcp = make_generic_dataset_mcp(
aspect_name="datasetProperties",
aspect=DatasetPropertiesClass(description="Test dataset"),
)
events_file = create_and_run_test_pipeline(
events=[mcp],
transformers=[{"type": "mark_dataset_status", "config": {"removed": True}}],
path=tmp_path,
)
# assert dataset properties aspect was preserved
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="datasetProperties",
aspect_field_matcher={"description": "Test dataset"},
file=events_file,
)
== 1
)
# assert Status aspect was generated
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="status",
aspect_field_matcher={"removed": True},
file=events_file,
)
== 1
)
# MCE only
test_aspect = DatasetPropertiesClass(description="Test dataset")
events_file = create_and_run_test_pipeline(
events=[make_generic_dataset(aspects=[test_aspect])],
transformers=[{"type": "mark_dataset_status", "config": {"removed": True}}],
path=tmp_path,
)
# assert dataset properties aspect was preserved
assert (
tests.test_helpers.mce_helpers.assert_entity_mce_aspect(
entity_urn=mcp.entityUrn or "",
aspect=test_aspect,
aspect_type=DatasetPropertiesClass,
file=events_file,
)
== 1
)
# assert Status aspect was generated
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="status",
aspect_field_matcher={"removed": True},
file=events_file,
)
== 1
)
# MCE (non-matching) + MCP (matching)
test_aspect = DatasetPropertiesClass(description="Test dataset")
events_file = create_and_run_test_pipeline(
events=[
make_generic_dataset(aspects=[test_aspect]),
make_generic_dataset_mcp(),
],
transformers=[{"type": "mark_dataset_status", "config": {"removed": True}}],
path=tmp_path,
)
# assert dataset properties aspect was preserved
assert (
tests.test_helpers.mce_helpers.assert_entity_mce_aspect(
entity_urn=mcp.entityUrn or "",
aspect=test_aspect,
aspect_type=DatasetPropertiesClass,
file=events_file,
)
== 1
)
# assert Status aspect was generated
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="status",
aspect_field_matcher={"removed": True},
file=events_file,
)
== 1
)
# MCE (matching) + MCP (non-matching)
test_status_aspect = StatusClass(removed=False)
events_file = create_and_run_test_pipeline(
events=[
make_generic_dataset(aspects=[test_status_aspect]),
make_generic_dataset_mcp(
aspect_name="datasetProperties",
aspect=DatasetPropertiesClass(description="test dataset"),
),
],
transformers=[{"type": "mark_dataset_status", "config": {"removed": True}}],
path=tmp_path,
)
# assert MCE was transformed
assert (
tests.test_helpers.mce_helpers.assert_entity_mce_aspect(
entity_urn=mcp.entityUrn or "",
aspect=StatusClass(removed=True),
aspect_type=StatusClass,
file=events_file,
)
== 1
)
# assert MCP aspect was preserved
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="datasetProperties",
aspect_field_matcher={"description": "test dataset"},
file=events_file,
)
== 1
)
# MCE (non-matching) + MCP (non-matching)
test_mcp_aspect = GlobalTagsClass(tags=[TagAssociationClass(tag="urn:li:tag:test")])
test_dataset_props_aspect = DatasetPropertiesClass(description="Test dataset")
events_file = create_and_run_test_pipeline(
events=[
make_generic_dataset(aspects=[test_dataset_props_aspect]),
make_generic_dataset_mcp(aspect_name="globalTags", aspect=test_mcp_aspect),
],
transformers=[{"type": "mark_dataset_status", "config": {"removed": True}}],
path=tmp_path,
)
# assert MCE was preserved
assert (
tests.test_helpers.mce_helpers.assert_entity_mce_aspect(
entity_urn=mcp.entityUrn or "",
aspect=test_dataset_props_aspect,
aspect_type=DatasetPropertiesClass,
file=events_file,
)
== 1
)
# assert MCP aspect was preserved
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="globalTags",
aspect_field_matcher={"tags": [{"tag": "urn:li:tag:test"}]},
file=events_file,
)
== 1
)
# assert MCP Status aspect was generated
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="status",
aspect_field_matcher={"removed": True},
file=events_file,
)
== 1
)
def test_extract_owners_from_tags():
def _test_owner(
tag: str,
config: Dict,
expected_owner: str,
expected_owner_type: Optional[str] = None,
expected_owner_type_urn: Optional[str] = None,
) -> None:
dataset = make_generic_dataset(
aspects=[
models.GlobalTagsClass(
tags=[TagAssociationClass(tag=builder.make_tag_urn(tag))]
)
]
)
transformer = ExtractOwnersFromTagsTransformer.create(
config,
PipelineContext(run_id="test"),
)
record_envelops: List[RecordEnvelope] = list(
transformer.transform(
[
RecordEnvelope(dataset, metadata={}),
RecordEnvelope(record=EndOfStream(), metadata={}),
]
)
)
assert len(record_envelops) == 3
mcp: MetadataChangeProposalWrapper = record_envelops[1].record
owners_aspect = cast(OwnershipClass, mcp.aspect)
owners = owners_aspect.owners
owner = owners[0]
assert expected_owner_type is not None
assert owner.type == expected_owner_type
assert owner.owner == expected_owner
assert owner.typeUrn == expected_owner_type_urn
_test_owner(
tag="owner:foo",
config={
"tag_prefix": "owner:",
},
expected_owner="urn:li:corpuser:foo",
expected_owner_type=OwnershipTypeClass.TECHNICAL_OWNER,
)
_test_owner(
tag="abcdef-owner:foo",
config={
"tag_prefix": ".*owner:",
},
expected_owner="urn:li:corpuser:foo",
expected_owner_type=OwnershipTypeClass.TECHNICAL_OWNER,
)
_test_owner(
tag="owner:foo",
config={
"tag_prefix": "owner:",
"is_user": False,
},
expected_owner="urn:li:corpGroup:foo",
expected_owner_type=OwnershipTypeClass.TECHNICAL_OWNER,
)
_test_owner(
tag="owner:foo",
config={
"tag_prefix": "owner:",
"email_domain": "example.com",
},
expected_owner="urn:li:corpuser:foo@example.com",
expected_owner_type=OwnershipTypeClass.TECHNICAL_OWNER,
)
_test_owner(
tag="owner:foo",
config={
"tag_prefix": "owner:",
"email_domain": "example.com",
"owner_type": "TECHNICAL_OWNER",
},
expected_owner="urn:li:corpuser:foo@example.com",
expected_owner_type=OwnershipTypeClass.TECHNICAL_OWNER,
)
_test_owner(
tag="owner:foo",
config={
"tag_prefix": "owner:",
"email_domain": "example.com",
"owner_type": "AUTHOR",
"owner_type_urn": "urn:li:ownershipType:ad8557d6-dcb9-4d2a-83fc-b7d0d54f3e0f",
},
expected_owner="urn:li:corpuser:foo@example.com",
expected_owner_type=OwnershipTypeClass.CUSTOM,
expected_owner_type_urn="urn:li:ownershipType:ad8557d6-dcb9-4d2a-83fc-b7d0d54f3e0f",
)
_test_owner(
tag="data__producer__owner__email:abc--xyz-email_com",
config={
"tag_pattern": "(.*)_owner_email:",
"tag_character_mapping": {
"_": ".",
"-": "@",
"__": "_",
"--": "-",
},
"extract_owner_type_from_tag_pattern": True,
},
expected_owner="urn:li:corpuser:abc-xyz@email.com",
expected_owner_type=OwnershipTypeClass.CUSTOM,
expected_owner_type_urn="urn:li:ownershipType:data_producer",
)
def test_add_dataset_browse_paths():
dataset = make_generic_dataset()
transformer = AddDatasetBrowsePathTransformer.create(
{"path_templates": ["/abc"]},
PipelineContext(run_id="test"),
)
transformed = list(
transformer.transform(
[
RecordEnvelope(dataset, metadata={}),
RecordEnvelope(EndOfStream(), metadata={}),
]
)
)
browse_path_aspect = transformed[1].record.aspect
assert browse_path_aspect
assert browse_path_aspect.paths == ["/abc"]
# use an mce with a pre-existing browse path
dataset_mce = make_generic_dataset(
aspects=[StatusClass(removed=False), browse_path_aspect]
)
transformer = AddDatasetBrowsePathTransformer.create(
{
"path_templates": [
"/PLATFORM/foo/DATASET_PARTS/ENV",
"/ENV/PLATFORM/bar/DATASET_PARTS/",
]
},
PipelineContext(run_id="test"),
)
transformed = list(
transformer.transform(
[
RecordEnvelope(dataset_mce, metadata={}),
RecordEnvelope(EndOfStream(), metadata={}),
]
)
)
assert len(transformed) == 2
browse_path_aspect = builder.get_aspect_if_available(
transformed[0].record, BrowsePathsClass
)
assert browse_path_aspect
assert browse_path_aspect.paths == [
"/abc",
"/bigquery/foo/example1/prod",
"/prod/bigquery/bar/example1/",
]
transformer = AddDatasetBrowsePathTransformer.create(
{
"path_templates": [
"/xyz",
],
"replace_existing": True,
},
PipelineContext(run_id="test"),
)
transformed = list(
transformer.transform(
[
RecordEnvelope(dataset_mce, metadata={}),
RecordEnvelope(EndOfStream(), metadata={}),
]
)
)
assert len(transformed) == 2
browse_path_aspect = builder.get_aspect_if_available(
transformed[0].record, BrowsePathsClass
)
assert browse_path_aspect
assert browse_path_aspect.paths == [
"/xyz",
]
def test_simple_dataset_tags_transformation(mock_time):
dataset_mce = make_generic_dataset()
transformer = SimpleAddDatasetTags.create(
{
"tag_urns": [
builder.make_tag_urn("NeedsDocumentation"),
builder.make_tag_urn("Legacy"),
]
},
PipelineContext(run_id="test-tags"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [dataset_mce, EndOfStream()]
]
)
)
assert len(outputs) == 5
# Check that tags were added.
tags_aspect = outputs[1].record.aspect
assert tags_aspect.tags[0].tag == builder.make_tag_urn("NeedsDocumentation")
assert tags_aspect
assert len(tags_aspect.tags) == 2
# Check new tag entity should be there
assert outputs[2].record.aspectName == "tagKey"
assert outputs[2].record.aspect.name == "NeedsDocumentation"
assert outputs[2].record.entityUrn == builder.make_tag_urn("NeedsDocumentation")
assert outputs[3].record.aspectName == "tagKey"
assert outputs[3].record.aspect.name == "Legacy"
assert outputs[3].record.entityUrn == builder.make_tag_urn("Legacy")
assert isinstance(outputs[4].record, EndOfStream)
def dummy_tag_resolver_method(dataset_snapshot):
return []
def test_pattern_dataset_tags_transformation(mock_time):
dataset_mce = make_generic_dataset()
transformer = PatternAddDatasetTags.create(
{
"tag_pattern": {
"rules": {
".*example1.*": [
builder.make_tag_urn("Private"),
builder.make_tag_urn("Legacy"),
],
".*example2.*": [builder.make_term_urn("Needs Documentation")],
}
},
},
PipelineContext(run_id="test-tags"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [dataset_mce, EndOfStream()]
]
)
)
assert len(outputs) == 5
tags_aspect = outputs[1].record.aspect
assert tags_aspect
assert len(tags_aspect.tags) == 2
assert tags_aspect.tags[0].tag == builder.make_tag_urn("Private")
assert builder.make_tag_urn("Needs Documentation") not in tags_aspect.tags
def test_add_dataset_tags_transformation():
transformer = AddDatasetTags.create(
{
"get_tags_to_add": "tests.unit.test_transform_dataset.dummy_tag_resolver_method"
},
PipelineContext(run_id="test-tags"),
)
output = list(
transformer.transform(
[RecordEnvelope(input, metadata={}) for input in [make_generic_dataset()]]
)
)
assert output
def test_pattern_dataset_ownership_transformation(mock_time):
no_owner_aspect = make_generic_dataset()
with_owner_aspect = models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)",
aspects=[
models.OwnershipClass(
owners=[
models.OwnerClass(
owner=builder.make_user_urn("fake_owner"),
type=models.OwnershipTypeClass.DATAOWNER,
),
],
lastModified=models.AuditStampClass(
time=1625266033123, actor="urn:li:corpuser:datahub"
),
)
],
),
)
not_a_dataset = models.MetadataChangeEventClass(
proposedSnapshot=models.DataJobSnapshotClass(
urn="urn:li:dataJob:(urn:li:dataFlow:(airflow,dag_abc,PROD),task_456)",
aspects=[
models.DataJobInfoClass(
name="User Deletions",
description="Constructs the fct_users_deleted from logging_events",
type=models.AzkabanJobTypeClass.SQL,
)
],
)
)
inputs = [no_owner_aspect, with_owner_aspect, not_a_dataset, EndOfStream()]
transformer = PatternAddDatasetOwnership.create(
{
"owner_pattern": {
"rules": {
".*example1.*": [builder.make_user_urn("person1")],
".*example2.*": [builder.make_user_urn("person2")],
}
},
"ownership_type": "DATAOWNER",
},
PipelineContext(run_id="test"),
)
outputs = list(
transformer.transform([RecordEnvelope(input, metadata={}) for input in inputs])
)
assert len(outputs) == len(inputs) + 1 # additional MCP due to the no-owner MCE
# Check the first entry.
assert inputs[0] == outputs[0].record
first_ownership_aspect = outputs[3].record.aspect
assert first_ownership_aspect
assert len(first_ownership_aspect.owners) == 1
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER
for owner in first_ownership_aspect.owners
]
)
# Check the second entry.
second_ownership_aspect = builder.get_aspect_if_available(
outputs[1].record, models.OwnershipClass
)
assert second_ownership_aspect
assert len(second_ownership_aspect.owners) == 2
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER
for owner in second_ownership_aspect.owners
]
)
# Verify that the third entry is unchanged.
assert inputs[2] == outputs[2].record
# Verify that the last entry is unchanged (EOS)
assert inputs[-1] == outputs[-1].record
def test_pattern_dataset_ownership_with_type_transformation(mock_time):
input = make_generic_dataset()
transformer = PatternAddDatasetOwnership.create(
{
"owner_pattern": {
"rules": {
".*example1.*": [builder.make_user_urn("person1")],
}
},
"ownership_type": "PRODUCER",
},
PipelineContext(run_id="test"),
)
output = list(
transformer.transform(
[
RecordEnvelope(input, metadata={}),
RecordEnvelope(EndOfStream(), metadata={}),
]
)
)
assert len(output) == 3
ownership_aspect = output[1].record.aspect
assert ownership_aspect
assert len(ownership_aspect.owners) == 1
assert ownership_aspect.owners[0].type == models.OwnershipTypeClass.PRODUCER
def test_pattern_dataset_ownership_with_invalid_type_transformation(mock_time):
with pytest.raises(ValueError):
PatternAddDatasetOwnership.create(
{
"owner_pattern": {
"rules": {
".*example1.*": [builder.make_user_urn("person1")],
}
},
"ownership_type": "INVALID_TYPE",
},
PipelineContext(run_id="test"),
)
def test_pattern_container_and_dataset_ownership_transformation(
mock_time, mock_datahub_graph
):
def fake_get_aspect(
entity_urn: str,
aspect_type: Type[models.BrowsePathsV2Class],
version: int = 0,
) -> Optional[models.BrowsePathsV2Class]:
return models.BrowsePathsV2Class(
path=[
models.BrowsePathEntryClass(
id="container_1", urn="urn:li:container:container_1"
),
models.BrowsePathEntryClass(
id="container_2", urn="urn:li:container:container_2"
),
]
)
pipeline_context = PipelineContext(
run_id="test_pattern_container_and_dataset_ownership_transformation"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_aspect = fake_get_aspect # type: ignore
# No owner aspect for the first dataset
no_owner_aspect = models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)",
aspects=[models.StatusClass(removed=False)],
),
)
# Dataset with an existing owner
with_owner_aspect = models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)",
aspects=[
models.OwnershipClass(
owners=[
models.OwnerClass(
owner=builder.make_user_urn("fake_owner"),
type=models.OwnershipTypeClass.DATAOWNER,
),
],
lastModified=models.AuditStampClass(
time=1625266033123, actor="urn:li:corpuser:datahub"
),
)
],
),
)
# Not a dataset, should be ignored
not_a_dataset = models.MetadataChangeEventClass(
proposedSnapshot=models.DataJobSnapshotClass(
urn="urn:li:dataJob:(urn:li:dataFlow:(airflow,dag_abc,PROD),task_456)",
aspects=[
models.DataJobInfoClass(
name="User Deletions",
description="Constructs the fct_users_deleted from logging_events",
type=models.AzkabanJobTypeClass.SQL,
)
],
)
)
inputs = [
no_owner_aspect,
with_owner_aspect,
not_a_dataset,
EndOfStream(),
]
# Initialize the transformer with container support
transformer = PatternAddDatasetOwnership.create(
{
"owner_pattern": {
"rules": {
".*example1.*": [builder.make_user_urn("person1")],
".*example2.*": [builder.make_user_urn("person2")],
}
},
"ownership_type": "DATAOWNER",
"is_container": True, # Enable container ownership handling
},
pipeline_context,
)
outputs = list(
transformer.transform([RecordEnvelope(input, metadata={}) for input in inputs])
)
assert len(outputs) == len(inputs) + 3
# Check the first entry.
assert inputs[0] == outputs[0].record
# Check the ownership for the first dataset (example1)
first_ownership_aspect = outputs[3].record.aspect
assert first_ownership_aspect
assert len(first_ownership_aspect.owners) == 1
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER
for owner in first_ownership_aspect.owners
]
)
# Check the ownership for the second dataset (example2)
second_ownership_aspect = builder.get_aspect_if_available(
outputs[1].record, models.OwnershipClass
)
assert second_ownership_aspect
assert len(second_ownership_aspect.owners) == 2 # One existing + one new
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER
for owner in second_ownership_aspect.owners
]
)
# Check container ownerships
for i in range(2):
container_ownership_aspect = outputs[i + 4].record.aspect
assert container_ownership_aspect
ownership = json.loads(container_ownership_aspect.value.decode("utf-8"))
assert len(ownership) == 2
assert ownership[0]["value"]["owner"] == builder.make_user_urn("person1")
assert ownership[1]["value"]["owner"] == builder.make_user_urn("person2")
# Verify that the third input (not a dataset) is unchanged
assert inputs[2] == outputs[2].record
def test_pattern_container_and_dataset_ownership_with_no_container(
mock_time, mock_datahub_graph
):
def fake_get_aspect(
entity_urn: str,
aspect_type: Type[models.BrowsePathsV2Class],
version: int = 0,
) -> Optional[models.BrowsePathsV2Class]:
return None
pipeline_context = PipelineContext(
run_id="test_pattern_container_and_dataset_ownership_with_no_container"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_aspect = fake_get_aspect # type: ignore
# No owner aspect for the first dataset
no_owner_aspect = models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)",
aspects=[
models.StatusClass(removed=False),
models.BrowsePathsV2Class(
path=[
models.BrowsePathEntryClass(
id="container_1", urn="urn:li:container:container_1"
),
models.BrowsePathEntryClass(
id="container_2", urn="urn:li:container:container_2"
),
]
),
],
),
)
# Dataset with an existing owner
with_owner_aspect = models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)",
aspects=[
models.OwnershipClass(
owners=[
models.OwnerClass(
owner=builder.make_user_urn("fake_owner"),
type=models.OwnershipTypeClass.DATAOWNER,
),
],
lastModified=models.AuditStampClass(
time=1625266033123, actor="urn:li:corpuser:datahub"
),
),
models.BrowsePathsV2Class(
path=[
models.BrowsePathEntryClass(
id="container_1", urn="urn:li:container:container_1"
),
models.BrowsePathEntryClass(
id="container_2", urn="urn:li:container:container_2"
),
]
),
],
),
)
inputs = [
no_owner_aspect,
with_owner_aspect,
EndOfStream(),
]
# Initialize the transformer with container support
transformer = PatternAddDatasetOwnership.create(
{
"owner_pattern": {
"rules": {
".*example1.*": [builder.make_user_urn("person1")],
".*example2.*": [builder.make_user_urn("person2")],
}
},
"ownership_type": "DATAOWNER",
"is_container": True, # Enable container ownership handling
},
pipeline_context,
)
outputs = list(
transformer.transform([RecordEnvelope(input, metadata={}) for input in inputs])
)
assert len(outputs) == len(inputs) + 1
# Check the ownership for the first dataset (example1)
first_ownership_aspect = outputs[2].record.aspect
assert first_ownership_aspect
assert len(first_ownership_aspect.owners) == 1
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER
for owner in first_ownership_aspect.owners
]
)
# Check the ownership for the second dataset (example2)
second_ownership_aspect = builder.get_aspect_if_available(
outputs[1].record, models.OwnershipClass
)
assert second_ownership_aspect
assert len(second_ownership_aspect.owners) == 2 # One existing + one new
assert all(
[
owner.type == models.OwnershipTypeClass.DATAOWNER
for owner in second_ownership_aspect.owners
]
)
def test_pattern_container_and_dataset_ownership_with_no_match(
mock_time, mock_datahub_graph
):
def fake_get_aspect(
entity_urn: str,
aspect_type: Type[models.BrowsePathsV2Class],
version: int = 0,
) -> models.BrowsePathsV2Class:
return models.BrowsePathsV2Class(
path=[
models.BrowsePathEntryClass(
id="container_1", urn="urn:li:container:container_1"
)
]
)
pipeline_context = PipelineContext(
run_id="test_pattern_container_and_dataset_ownership_with_no_match"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_aspect = fake_get_aspect # type: ignore
# No owner aspect for the first dataset
no_owner_aspect = models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)",
aspects=[
models.StatusClass(removed=False),
],
),
)
# Dataset with an existing owner
with_owner_aspect = models.MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)",
aspects=[
models.OwnershipClass(
owners=[
models.OwnerClass(
owner=builder.make_user_urn("fake_owner"),
type=models.OwnershipTypeClass.DATAOWNER,
),
],
lastModified=models.AuditStampClass(
time=1625266033123, actor="urn:li:corpuser:datahub"
),
)
],
),
)
inputs = [
no_owner_aspect,
with_owner_aspect,
EndOfStream(),
]
# Initialize the transformer with container support
transformer = PatternAddDatasetOwnership.create(
{
"owner_pattern": {
"rules": {
".*example3.*": [builder.make_user_urn("person1")],
".*example4.*": [builder.make_user_urn("person2")],
}
},
"ownership_type": "DATAOWNER",
"is_container": True, # Enable container ownership handling
},
pipeline_context,
)
outputs = list(
transformer.transform([RecordEnvelope(input, metadata={}) for input in inputs])
)
assert len(outputs) == len(inputs) + 1
# Check the ownership for the first dataset (example1)
first_ownership_aspect = outputs[2].record.aspect
assert first_ownership_aspect
assert builder.make_user_urn("person1") not in first_ownership_aspect.owners
assert builder.make_user_urn("person2") not in first_ownership_aspect.owners
# Check the ownership for the second dataset (example2)
second_ownership_aspect = builder.get_aspect_if_available(
outputs[1].record, models.OwnershipClass
)
assert second_ownership_aspect
assert len(second_ownership_aspect.owners) == 1
assert builder.make_user_urn("person1") not in second_ownership_aspect.owners
assert builder.make_user_urn("person2") not in second_ownership_aspect.owners
assert (
builder.make_user_urn("fake_owner") == second_ownership_aspect.owners[0].owner
)
def gen_owners(
owners: List[str],
ownership_type: Union[
str, models.OwnershipTypeClass
] = models.OwnershipTypeClass.DATAOWNER,
) -> models.OwnershipClass:
return models.OwnershipClass(
owners=[models.OwnerClass(owner=owner, type=ownership_type) for owner in owners]
)
def test_ownership_patching_intersect(mock_time):
mock_graph = mock.MagicMock()
server_ownership = gen_owners(["foo", "bar"])
mce_ownership = gen_owners(["baz", "foo"])
mock_graph.get_ownership.return_value = server_ownership
test_ownership = AddDatasetOwnership._merge_with_server_ownership(
mock_graph, "test_urn", mce_ownership
)
assert test_ownership and test_ownership.owners
assert "foo" in [o.owner for o in test_ownership.owners]
assert "bar" in [o.owner for o in test_ownership.owners]
assert "baz" in [o.owner for o in test_ownership.owners]
def test_ownership_patching_with_nones(mock_time):
mock_graph = mock.MagicMock()
mce_ownership = gen_owners(["baz", "foo"])
mock_graph.get_ownership.return_value = None
test_ownership = AddDatasetOwnership._merge_with_server_ownership(
mock_graph, "test_urn", mce_ownership
)
assert test_ownership and test_ownership.owners
assert "foo" in [o.owner for o in test_ownership.owners]
assert "baz" in [o.owner for o in test_ownership.owners]
server_ownership = gen_owners(["baz", "foo"])
mock_graph.get_ownership.return_value = server_ownership
test_ownership = AddDatasetOwnership._merge_with_server_ownership(
mock_graph, "test_urn", None
)
assert not test_ownership
def test_ownership_patching_with_empty_mce_none_server(mock_time):
mock_graph = mock.MagicMock()
mce_ownership = gen_owners([])
mock_graph.get_ownership.return_value = None
test_ownership = AddDatasetOwnership._merge_with_server_ownership(
mock_graph, "test_urn", mce_ownership
)
# nothing to add, so we omit writing
assert test_ownership is None
def test_ownership_patching_with_empty_mce_nonempty_server(mock_time):
mock_graph = mock.MagicMock()
server_ownership = gen_owners(["baz", "foo"])
mce_ownership = gen_owners([])
mock_graph.get_ownership.return_value = server_ownership
test_ownership = AddDatasetOwnership._merge_with_server_ownership(
mock_graph, "test_urn", mce_ownership
)
# nothing to add, so we omit writing
assert test_ownership is None
def test_ownership_patching_with_different_types_1(mock_time):
mock_graph = mock.MagicMock()
server_ownership = gen_owners(["baz", "foo"], models.OwnershipTypeClass.PRODUCER)
mce_ownership = gen_owners(["foo"], models.OwnershipTypeClass.DATAOWNER)
mock_graph.get_ownership.return_value = server_ownership
test_ownership = AddDatasetOwnership._merge_with_server_ownership(
mock_graph, "test_urn", mce_ownership
)
assert test_ownership and test_ownership.owners
# nothing to add, so we omit writing
assert ("foo", models.OwnershipTypeClass.DATAOWNER) in [
(o.owner, o.type) for o in test_ownership.owners
]
assert ("baz", models.OwnershipTypeClass.PRODUCER) in [
(o.owner, o.type) for o in test_ownership.owners
]
def test_ownership_patching_with_different_types_2(mock_time):
mock_graph = mock.MagicMock()
server_ownership = gen_owners(["baz", "foo"], models.OwnershipTypeClass.PRODUCER)
mce_ownership = gen_owners(["foo", "baz"], models.OwnershipTypeClass.DATAOWNER)
mock_graph.get_ownership.return_value = server_ownership
test_ownership = AddDatasetOwnership._merge_with_server_ownership(
mock_graph, "test_urn", mce_ownership
)
assert test_ownership and test_ownership.owners
assert len(test_ownership.owners) == 2
# nothing to add, so we omit writing
assert ("foo", models.OwnershipTypeClass.DATAOWNER) in [
(o.owner, o.type) for o in test_ownership.owners
]
assert ("baz", models.OwnershipTypeClass.DATAOWNER) in [
(o.owner, o.type) for o in test_ownership.owners
]
PROPERTIES_TO_ADD = {"my_new_property": "property value"}
class DummyPropertiesResolverClass(AddDatasetPropertiesResolverBase):
def get_properties_to_add(self, entity_urn: str) -> Dict[str, str]:
return PROPERTIES_TO_ADD
def test_add_dataset_properties(mock_time):
dataset_mce = make_dataset_with_properties()
transformer = AddDatasetProperties.create(
{
"add_properties_resolver_class": "tests.unit.test_transform_dataset.DummyPropertiesResolverClass"
},
PipelineContext(run_id="test-properties"),
)
outputs = list(
transformer.transform(
[RecordEnvelope(input, metadata={}) for input in [dataset_mce]]
)
)
assert len(outputs) == 1
custom_properties = builder.get_aspect_if_available(
outputs[0].record, models.DatasetPropertiesClass
)
assert custom_properties is not None
assert custom_properties.customProperties == {
**EXISTING_PROPERTIES,
**PROPERTIES_TO_ADD,
}
def run_simple_add_dataset_properties_transformer_semantics(
semantics: TransformerSemantics,
new_properties: dict,
server_properties: dict,
mock_datahub_graph: Callable[[DatahubClientConfig], DataHubGraph],
) -> List[RecordEnvelope]:
pipeline_context = PipelineContext(run_id="test_pattern_dataset_schema_terms")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# fake the server response
def fake_dataset_properties(entity_urn: str) -> models.DatasetPropertiesClass:
return DatasetPropertiesClass(customProperties=server_properties)
pipeline_context.graph.get_dataset_properties = fake_dataset_properties # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetProperties,
pipeline_context=pipeline_context,
aspect=models.DatasetPropertiesClass(
customProperties=EXISTING_PROPERTIES.copy()
),
config={
"semantics": semantics,
"properties": new_properties,
},
)
return output
def test_simple_add_dataset_properties_overwrite(mock_datahub_graph):
new_properties = {"new-simple-property": "new-value"}
server_properties = {"p1": "value1"}
output = run_simple_add_dataset_properties_transformer_semantics(
semantics=TransformerSemantics.OVERWRITE,
new_properties=new_properties,
server_properties=server_properties,
mock_datahub_graph=mock_datahub_graph,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
custom_properties_aspect: models.DatasetPropertiesClass = cast(
models.DatasetPropertiesClass, output[0].record.aspect
)
assert custom_properties_aspect.customProperties == {
**EXISTING_PROPERTIES,
**new_properties,
}
def test_simple_add_dataset_properties_patch(mock_datahub_graph):
new_properties = {"new-simple-property": "new-value"}
server_properties = {"p1": "value1"}
output = run_simple_add_dataset_properties_transformer_semantics(
semantics=TransformerSemantics.PATCH,
new_properties=new_properties,
server_properties=server_properties,
mock_datahub_graph=mock_datahub_graph,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
custom_properties_aspect: models.DatasetPropertiesClass = cast(
models.DatasetPropertiesClass, output[0].record.aspect
)
assert custom_properties_aspect.customProperties == {
**EXISTING_PROPERTIES,
**new_properties,
**server_properties,
}
def test_simple_add_dataset_properties(mock_time):
new_properties = {"new-simple-property": "new-value"}
outputs = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetProperties,
aspect=models.DatasetPropertiesClass(
customProperties=EXISTING_PROPERTIES.copy()
),
config={
"properties": new_properties,
},
)
assert len(outputs) == 2
assert outputs[0].record
assert outputs[0].record.aspect
custom_properties_aspect: models.DatasetPropertiesClass = cast(
models.DatasetPropertiesClass, outputs[0].record.aspect
)
assert custom_properties_aspect.customProperties == {
**EXISTING_PROPERTIES,
**new_properties,
}
def test_simple_add_dataset_properties_replace_existing(mock_time):
new_properties = {"new-simple-property": "new-value"}
outputs = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetProperties,
aspect=models.DatasetPropertiesClass(
customProperties=EXISTING_PROPERTIES.copy()
),
config={
"replace_existing": True,
"properties": new_properties,
},
)
assert len(outputs) == 2
assert outputs[0].record
assert outputs[0].record.aspect
custom_properties_aspect: models.DatasetPropertiesClass = cast(
models.DatasetPropertiesClass, outputs[0].record.aspect
)
assert custom_properties_aspect.customProperties == {
**new_properties,
}
def test_simple_dataset_terms_transformation(mock_time):
dataset_mce = make_generic_dataset()
transformer = SimpleAddDatasetTerms.create(
{
"term_urns": [
builder.make_term_urn("Test"),
builder.make_term_urn("Needs Review"),
]
},
PipelineContext(run_id="test-terms"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [dataset_mce, EndOfStream()]
]
)
)
assert len(outputs) == 3
# Check that glossary terms were added.
terms_aspect = outputs[1].record.aspect
assert terms_aspect
assert len(terms_aspect.terms) == 2
assert terms_aspect.terms[0].urn == builder.make_term_urn("Test")
def test_pattern_dataset_terms_transformation(mock_time):
dataset_mce = make_generic_dataset()
transformer = PatternAddDatasetTerms.create(
{
"term_pattern": {
"rules": {
".*example1.*": [
builder.make_term_urn("AccountBalance"),
builder.make_term_urn("Email"),
],
".*example2.*": [builder.make_term_urn("Address")],
}
},
},
PipelineContext(run_id="test-terms"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [dataset_mce, EndOfStream()]
]
)
)
assert len(outputs) == 3
# Check that glossary terms were added.
terms_aspect = outputs[1].record.aspect
assert terms_aspect
assert len(terms_aspect.terms) == 2
assert terms_aspect.terms[0].urn == builder.make_term_urn("AccountBalance")
assert builder.make_term_urn("AccountBalance") not in terms_aspect.terms
def test_mcp_add_tags_missing(mock_time):
dataset_mcp = make_generic_dataset_mcp()
transformer = SimpleAddDatasetTags.create(
{
"tag_urns": [
builder.make_tag_urn("NeedsDocumentation"),
builder.make_tag_urn("Legacy"),
]
},
PipelineContext(run_id="test-tags"),
)
input_stream: List[RecordEnvelope] = [
RecordEnvelope(input, metadata={}) for input in [dataset_mcp]
]
input_stream.append(RecordEnvelope(record=EndOfStream(), metadata={}))
outputs = list(transformer.transform(input_stream))
assert len(outputs) == 5
assert outputs[0].record == dataset_mcp
# Check that tags were added, this will be the second result
tags_aspect = outputs[1].record.aspect
assert tags_aspect
assert len(tags_aspect.tags) == 2
assert tags_aspect.tags[0].tag == builder.make_tag_urn("NeedsDocumentation")
assert isinstance(outputs[-1].record, EndOfStream)
def test_mcp_add_tags_existing(mock_time):
dataset_mcp = make_generic_dataset_mcp(
aspect_name="globalTags",
aspect=GlobalTagsClass(
tags=[TagAssociationClass(tag=builder.make_tag_urn("Test"))]
),
)
transformer = SimpleAddDatasetTags.create(
{
"tag_urns": [
builder.make_tag_urn("NeedsDocumentation"),
builder.make_tag_urn("Legacy"),
]
},
PipelineContext(run_id="test-tags"),
)
input_stream: List[RecordEnvelope] = [
RecordEnvelope(input, metadata={}) for input in [dataset_mcp]
]
input_stream.append(RecordEnvelope(record=EndOfStream(), metadata={}))
outputs = list(transformer.transform(input_stream))
assert len(outputs) == 4
# Check that tags were added, this will be the second result
tags_aspect = outputs[0].record.aspect
assert tags_aspect
assert len(tags_aspect.tags) == 3
assert tags_aspect.tags[0].tag == builder.make_tag_urn("Test")
assert tags_aspect.tags[1].tag == builder.make_tag_urn("NeedsDocumentation")
assert tags_aspect.tags[2].tag == builder.make_tag_urn("Legacy")
# Check tag entities got added
assert outputs[1].record.entityType == "tag"
assert outputs[1].record.entityUrn == builder.make_tag_urn("NeedsDocumentation")
assert outputs[2].record.entityType == "tag"
assert outputs[2].record.entityUrn == builder.make_tag_urn("Legacy")
assert isinstance(outputs[-1].record, EndOfStream)
def test_mcp_multiple_transformers(mock_time, tmp_path):
events_file = f"{tmp_path}/multi_transformer_test.json"
pipeline = Pipeline.create(
config_dict={
"source": {
"type": "tests.unit.test_source.FakeSource",
"config": {},
},
"transformers": [
{
"type": "set_dataset_browse_path",
"config": {
"path_templates": ["/ENV/PLATFORM/EsComments/DATASET_PARTS"]
},
},
{
"type": "simple_add_dataset_tags",
"config": {"tag_urns": ["urn:li:tag:EsComments"]},
},
],
"sink": {"type": "file", "config": {"filename": events_file}},
}
)
pipeline.run()
pipeline.raise_from_status()
urn_pattern = "^" + re.escape(
"urn:li:dataset:(urn:li:dataPlatform:elasticsearch,fooIndex,PROD)"
)
assert (
tests.test_helpers.mce_helpers.assert_mcp_entity_urn(
filter="ALL",
entity_type="dataset",
regex_pattern=urn_pattern,
file=events_file,
)
== 3
)
# check on status aspect
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="status",
aspect_field_matcher={"removed": False},
file=events_file,
)
== 1
)
# check on globalTags aspect
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="globalTags",
aspect_field_matcher={"tags": [{"tag": "urn:li:tag:EsComments"}]},
file=events_file,
)
== 1
)
# check on globalTags aspect
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="browsePaths",
aspect_field_matcher={"paths": ["/prod/elasticsearch/EsComments/fooIndex"]},
file=events_file,
)
== 1
)
def test_mcp_multiple_transformers_replace(mock_time, tmp_path):
mcps: MutableSequence[
Union[MetadataChangeEventClass, MetadataChangeProposalWrapper]
] = [
MetadataChangeProposalWrapper(
entityUrn=str(
DatasetUrn.create_from_ids(
platform_id="elasticsearch",
table_name=f"fooBarIndex{i}",
env="PROD",
)
),
aspect=GlobalTagsClass(tags=[TagAssociationClass(tag="urn:li:tag:Test")]),
)
for i in range(0, 10)
]
mcps.extend(
[
MetadataChangeProposalWrapper(
entityUrn=str(
DatasetUrn.create_from_ids(
platform_id="elasticsearch",
table_name=f"fooBarIndex{i}",
env="PROD",
)
),
aspect=DatasetPropertiesClass(description="test dataset"),
)
for i in range(0, 10)
]
)
# shuffle the mcps
import random
random.shuffle(mcps)
events_file = create_and_run_test_pipeline(
events=list(mcps),
transformers=[
{
"type": "set_dataset_browse_path",
"config": {
"path_templates": ["/ENV/PLATFORM/EsComments/DATASET_PARTS"]
},
},
{
"type": "simple_add_dataset_tags",
"config": {"tag_urns": ["urn:li:tag:EsComments"]},
},
],
path=tmp_path,
)
urn_pattern = "^" + re.escape(
"urn:li:dataset:(urn:li:dataPlatform:elasticsearch,fooBarIndex"
)
# there should be 30 MCP-s
assert (
tests.test_helpers.mce_helpers.assert_mcp_entity_urn(
filter="ALL",
entity_type="dataset",
regex_pattern=urn_pattern,
file=events_file,
)
== 30
)
# 10 globalTags aspects with new tag attached
assert (
tests.test_helpers.mce_helpers.assert_for_each_entity(
entity_type="dataset",
aspect_name="globalTags",
aspect_field_matcher={
"tags": [{"tag": "urn:li:tag:Test"}, {"tag": "urn:li:tag:EsComments"}]
},
file=events_file,
)
== 10
)
# check on browsePaths aspect
for i in range(0, 10):
assert (
tests.test_helpers.mce_helpers.assert_entity_mcp_aspect(
entity_urn=str(
DatasetUrn.create_from_ids(
platform_id="elasticsearch",
table_name=f"fooBarIndex{i}",
env="PROD",
)
),
aspect_name="browsePaths",
aspect_field_matcher={
"paths": [f"/prod/elasticsearch/EsComments/fooBarIndex{i}"]
},
file=events_file,
)
== 1
)
class SuppressingTransformer(BaseTransformer, SingleAspectTransformer):
@classmethod
def create(
cls, config_dict: dict, ctx: PipelineContext
) -> "SuppressingTransformer":
return SuppressingTransformer()
def entity_types(self) -> List[str]:
return super().entity_types()
def aspect_name(self) -> str:
return "datasetProperties"
def transform_aspect(
self, entity_urn: str, aspect_name: str, aspect: Optional[builder.Aspect]
) -> Optional[builder.Aspect]:
return None
def test_supression_works():
dataset_mce = make_generic_dataset()
dataset_mcp = make_generic_dataset_mcp(
aspect_name="datasetProperties",
aspect=DatasetPropertiesClass(description="supressable description"),
)
transformer = SuppressingTransformer.create(
{},
PipelineContext(run_id="test-suppress-transformer"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [dataset_mce, dataset_mcp, EndOfStream()]
]
)
)
assert len(outputs) == 2 # MCP will be dropped
def test_pattern_dataset_schema_terms_transformation(mock_time):
dataset_mce = make_generic_dataset(
aspects=[
models.SchemaMetadataClass(
schemaName="customer", # not used
platform=builder.make_data_platform_urn(
"hive"
), # important <- platform must be an urn
version=0,
# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0
hash="",
# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
platformSchema=models.OtherSchemaClass(
rawSchema="__insert raw schema here__"
),
fields=[
models.SchemaFieldClass(
fieldPath="address",
type=models.SchemaFieldDataTypeClass(
type=models.StringTypeClass()
),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="first_name",
type=models.SchemaFieldDataTypeClass(
type=models.StringTypeClass()
),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="last_name",
type=models.SchemaFieldDataTypeClass(
type=models.StringTypeClass()
),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
],
)
]
)
transformer = PatternAddDatasetSchemaTerms.create(
{
"term_pattern": {
"rules": {
".*first_name.*": [
builder.make_term_urn("Name"),
builder.make_term_urn("FirstName"),
],
".*last_name.*": [
builder.make_term_urn("Name"),
builder.make_term_urn("LastName"),
],
}
},
},
PipelineContext(run_id="test-schema-terms"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [dataset_mce, EndOfStream()]
]
)
)
assert len(outputs) == 2
# Check that glossary terms were added.
schema_aspect = outputs[0].record.proposedSnapshot.aspects[0]
assert schema_aspect
assert schema_aspect.fields[0].fieldPath == "address"
assert schema_aspect.fields[0].glossaryTerms is None
assert schema_aspect.fields[1].fieldPath == "first_name"
assert schema_aspect.fields[1].glossaryTerms.terms[0].urn == builder.make_term_urn(
"Name"
)
assert schema_aspect.fields[1].glossaryTerms.terms[1].urn == builder.make_term_urn(
"FirstName"
)
assert schema_aspect.fields[2].fieldPath == "last_name"
assert schema_aspect.fields[2].glossaryTerms.terms[0].urn == builder.make_term_urn(
"Name"
)
assert schema_aspect.fields[2].glossaryTerms.terms[1].urn == builder.make_term_urn(
"LastName"
)
def test_pattern_dataset_schema_tags_transformation(mock_time):
dataset_mce = make_generic_dataset(
aspects=[
models.SchemaMetadataClass(
schemaName="customer", # not used
platform=builder.make_data_platform_urn(
"hive"
), # important <- platform must be an urn
version=0,
# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0
hash="",
# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
platformSchema=models.OtherSchemaClass(
rawSchema="__insert raw schema here__"
),
fields=[
models.SchemaFieldClass(
fieldPath="address",
type=models.SchemaFieldDataTypeClass(
type=models.StringTypeClass()
),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="first_name",
type=models.SchemaFieldDataTypeClass(
type=models.StringTypeClass()
),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="last_name",
type=models.SchemaFieldDataTypeClass(
type=models.StringTypeClass()
),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
],
)
]
)
transformer = PatternAddDatasetSchemaTags.create(
{
"tag_pattern": {
"rules": {
".*first_name.*": [
builder.make_tag_urn("Name"),
builder.make_tag_urn("FirstName"),
],
".*last_name.*": [
builder.make_tag_urn("Name"),
builder.make_tag_urn("LastName"),
],
}
},
},
PipelineContext(run_id="test-schema-tags"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [dataset_mce, EndOfStream()]
]
)
)
assert len(outputs) == 2
# Check that glossary terms were added.
schema_aspect = outputs[0].record.proposedSnapshot.aspects[0]
assert schema_aspect
assert schema_aspect.fields[0].fieldPath == "address"
assert schema_aspect.fields[0].globalTags is None
assert schema_aspect.fields[1].fieldPath == "first_name"
assert schema_aspect.fields[1].globalTags.tags[0].tag == builder.make_tag_urn(
"Name"
)
assert schema_aspect.fields[1].globalTags.tags[1].tag == builder.make_tag_urn(
"FirstName"
)
assert schema_aspect.fields[2].fieldPath == "last_name"
assert schema_aspect.fields[2].globalTags.tags[0].tag == builder.make_tag_urn(
"Name"
)
assert schema_aspect.fields[2].globalTags.tags[1].tag == builder.make_tag_urn(
"LastName"
)
def run_dataset_transformer_pipeline(
transformer_type: Type[Union[DatasetTransformer, TagTransformer]],
aspect: Optional[builder.Aspect],
config: dict,
pipeline_context: Optional[PipelineContext] = None,
use_mce: bool = False,
) -> List[RecordEnvelope]:
if pipeline_context is None:
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
transformer: DatasetTransformer = cast(
DatasetTransformer, transformer_type.create(config, pipeline_context)
)
dataset: Union[MetadataChangeEventClass, MetadataChangeProposalWrapper]
if use_mce:
dataset = MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example1,PROD)",
aspects=[],
)
)
else:
assert aspect
dataset = make_generic_dataset_mcp(
aspect=aspect, aspect_name=transformer.aspect_name()
)
outputs = list(
transformer.transform(
[RecordEnvelope(input, metadata={}) for input in [dataset, EndOfStream()]]
)
)
return outputs
def run_container_transformer_pipeline(
transformer_type: Type[ContainerTransformer],
aspect: Optional[builder.Aspect],
config: dict,
pipeline_context: Optional[PipelineContext] = None,
use_mce: bool = False,
) -> List[RecordEnvelope]:
if pipeline_context is None:
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
transformer: ContainerTransformer = cast(
ContainerTransformer, transformer_type.create(config, pipeline_context)
)
container: Union[MetadataChangeEventClass, MetadataChangeProposalWrapper]
if use_mce:
container = MetadataChangeEventClass(
proposedSnapshot=models.DatasetSnapshotClass(
urn="urn:li:container:6338f55439c7ae58243a62c4d6fbffde",
aspects=[],
)
)
else:
assert aspect
container = make_generic_container_mcp(
aspect=aspect, aspect_name=transformer.aspect_name()
)
outputs = list(
transformer.transform(
[RecordEnvelope(input, metadata={}) for input in [container, EndOfStream()]]
)
)
return outputs
def test_simple_add_dataset_domain_aspect_name(mock_datahub_graph):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
transformer = SimpleAddDatasetDomain.create({"domains": []}, pipeline_context)
assert transformer.aspect_name() == models.DomainsClass.ASPECT_NAME
def test_simple_add_dataset_domain(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={"domains": [acryl_domain]},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 2
assert datahub_domain in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
def test_simple_add_dataset_domain_mce_support(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetDomain,
aspect=None,
config={"domains": [datahub_domain, acryl_domain]},
pipeline_context=pipeline_context,
use_mce=True,
)
assert len(output) == 3
assert isinstance(output[0].record, MetadataChangeEventClass)
assert isinstance(output[0].record.proposedSnapshot, models.DatasetSnapshotClass)
assert len(output[0].record.proposedSnapshot.aspects) == 0
assert isinstance(output[1].record, MetadataChangeProposalWrapper)
assert output[1].record.aspect is not None
assert isinstance(output[1].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[1].record.aspect)
assert len(transformed_aspect.domains) == 2
assert datahub_domain in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
def test_simple_add_dataset_domain_replace_existing(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={"replace_existing": True, "domains": [acryl_domain]},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 1
assert datahub_domain not in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
def test_simple_add_dataset_domain_semantics_overwrite(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
server_domain = builder.make_domain_urn("test.io")
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_domain(entity_urn: str) -> models.DomainsClass:
return models.DomainsClass(domains=[server_domain])
pipeline_context.graph.get_domain = fake_get_domain # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"semantics": TransformerSemantics.OVERWRITE,
"domains": [acryl_domain],
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 2
assert datahub_domain in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
assert server_domain not in transformed_aspect.domains
def test_simple_add_dataset_domain_semantics_patch(
pytestconfig, tmp_path, mock_time, mock_datahub_graph
):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
server_domain = builder.make_domain_urn("test.io")
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_domain(entity_urn: str) -> models.DomainsClass:
return models.DomainsClass(domains=[server_domain])
pipeline_context.graph.get_domain = fake_get_domain # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"replace_existing": False,
"semantics": TransformerSemantics.PATCH,
"domains": [acryl_domain],
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 3
assert datahub_domain in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
assert server_domain in transformed_aspect.domains
def test_pattern_add_dataset_domain_aspect_name(mock_datahub_graph):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
transformer = PatternAddDatasetDomain.create(
{"domain_pattern": {"rules": {}}}, pipeline_context
)
assert transformer.aspect_name() == models.DomainsClass.ASPECT_NAME
def test_pattern_add_dataset_domain_match(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pattern = "urn:li:dataset:\\(urn:li:dataPlatform:bigquery,.*"
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"domain_pattern": {"rules": {pattern: [acryl_domain]}},
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 2
assert datahub_domain in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
def test_pattern_add_dataset_domain_no_match(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pattern = "urn:li:dataset:\\(urn:li:dataPlatform:invalid,.*"
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"domain_pattern": {"rules": {pattern: [acryl_domain]}},
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 1
assert datahub_domain in transformed_aspect.domains
assert acryl_domain not in transformed_aspect.domains
def test_pattern_add_dataset_domain_replace_existing_match(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pattern = "urn:li:dataset:\\(urn:li:dataPlatform:bigquery,.*"
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"replace_existing": True,
"domain_pattern": {"rules": {pattern: [acryl_domain]}},
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 1
assert datahub_domain not in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
def test_pattern_add_dataset_domain_replace_existing_no_match(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pattern = "urn:li:dataset:\\(urn:li:dataPlatform:invalid,.*"
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"replace_existing": True,
"domain_pattern": {"rules": {pattern: [acryl_domain]}},
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 0
def test_pattern_add_dataset_domain_semantics_overwrite(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
server_domain = builder.make_domain_urn("test.io")
pattern = "urn:li:dataset:\\(urn:li:dataPlatform:bigquery,.*"
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_domain(entity_urn: str) -> models.DomainsClass:
return models.DomainsClass(domains=[server_domain])
pipeline_context.graph.get_domain = fake_get_domain # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"semantics": TransformerSemantics.OVERWRITE,
"domain_pattern": {"rules": {pattern: [acryl_domain]}},
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 2
assert datahub_domain in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
assert server_domain not in transformed_aspect.domains
def test_pattern_add_dataset_domain_semantics_patch(
pytestconfig, tmp_path, mock_time, mock_datahub_graph
):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
server_domain = builder.make_domain_urn("test.io")
pattern = "urn:li:dataset:\\(urn:li:dataPlatform:bigquery,.*"
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_domain(entity_urn: str) -> models.DomainsClass:
return models.DomainsClass(domains=[server_domain])
pipeline_context.graph.get_domain = fake_get_domain # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"replace_existing": False,
"semantics": TransformerSemantics.PATCH,
"domain_pattern": {"rules": {pattern: [acryl_domain]}},
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 3
assert datahub_domain in transformed_aspect.domains
assert acryl_domain in transformed_aspect.domains
assert server_domain in transformed_aspect.domains
def test_simple_dataset_ownership_transformer_semantics_patch(mock_datahub_graph):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
server_owner: str = builder.make_owner_urn(
"mohd@acryl.io", owner_type=builder.OwnerType.USER
)
owner1: str = builder.make_owner_urn(
"john@acryl.io", owner_type=builder.OwnerType.USER
)
owner2: str = builder.make_owner_urn(
"pedro@acryl.io", owner_type=builder.OwnerType.USER
)
# Return fake aspect to simulate server behaviour
def fake_ownership_class(entity_urn: str) -> models.OwnershipClass:
return models.OwnershipClass(
owners=[
models.OwnerClass(
owner=server_owner, type=models.OwnershipTypeClass.DATAOWNER
)
]
)
pipeline_context.graph.get_ownership = fake_ownership_class # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=SimpleAddDatasetOwnership,
aspect=models.OwnershipClass(
owners=[
models.OwnerClass(owner=owner1, type=models.OwnershipTypeClass.PRODUCER)
]
),
config={
"replace_existing": False,
"semantics": TransformerSemantics.PATCH,
"owner_urns": [owner2],
"ownership_type": "DATAOWNER",
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.OwnershipClass)
transformed_aspect: models.OwnershipClass = cast(
models.OwnershipClass, output[0].record.aspect
)
assert len(transformed_aspect.owners) == 3
owner_urns: List[str] = [
owner_class.owner for owner_class in transformed_aspect.owners
]
assert owner1 in owner_urns
assert owner2 in owner_urns
assert server_owner in owner_urns
def test_pattern_container_and_dataset_domain_transformation(mock_datahub_graph):
datahub_domain = builder.make_domain_urn("datahubproject.io")
acryl_domain = builder.make_domain_urn("acryl_domain")
server_domain = builder.make_domain_urn("server_domain")
def fake_get_aspect(
entity_urn: str,
aspect_type: Type[models.BrowsePathsV2Class],
version: int = 0,
) -> models.BrowsePathsV2Class:
return models.BrowsePathsV2Class(
path=[
models.BrowsePathEntryClass(
id="container_1", urn="urn:li:container:container_1"
),
models.BrowsePathEntryClass(
id="container_2", urn="urn:li:container:container_2"
),
]
)
pipeline_context = PipelineContext(
run_id="test_pattern_container_and_dataset_domain_transformation"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_aspect = fake_get_aspect # type: ignore
with_domain_aspect = make_generic_dataset_mcp(
aspect=models.DomainsClass(domains=[datahub_domain]), aspect_name="domains"
)
no_domain_aspect = make_generic_dataset_mcp(
entity_urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)"
)
# Not a dataset, should be ignored
not_a_dataset = models.MetadataChangeEventClass(
proposedSnapshot=models.DataJobSnapshotClass(
urn="urn:li:dataJob:(urn:li:dataFlow:(airflow,dag_abc,PROD),task_456)",
aspects=[
models.DataJobInfoClass(
name="User Deletions",
description="Constructs the fct_users_deleted from logging_events",
type=models.AzkabanJobTypeClass.SQL,
)
],
)
)
inputs = [
with_domain_aspect,
no_domain_aspect,
not_a_dataset,
EndOfStream(),
]
# Initialize the transformer with container support for domains
transformer = PatternAddDatasetDomain.create(
{
"domain_pattern": {
"rules": {
".*example1.*": [acryl_domain, server_domain],
".*example2.*": [server_domain],
}
},
"is_container": True, # Enable container domain handling
},
pipeline_context,
)
outputs = list(
transformer.transform([RecordEnvelope(input, metadata={}) for input in inputs])
)
assert (
len(outputs) == len(inputs) + 3
) # MCPs for the dataset without domains and the containers
first_domain_aspect = outputs[0].record.aspect
assert first_domain_aspect
assert len(first_domain_aspect.domains) == 3
assert all(
domain in first_domain_aspect.domains
for domain in [datahub_domain, acryl_domain, server_domain]
)
second_domain_aspect = outputs[3].record.aspect
assert second_domain_aspect
assert len(second_domain_aspect.domains) == 1
assert server_domain in second_domain_aspect.domains
# Verify that the third input (not a dataset) is unchanged
assert inputs[2] == outputs[2].record
# Verify conainer 1 and container 2 should contain all domains
container_1 = outputs[4].record.aspect
assert len(container_1.domains) == 2
assert acryl_domain in container_1.domains
assert server_domain in container_1.domains
container_2 = outputs[5].record.aspect
assert len(container_2.domains) == 2
assert acryl_domain in container_2.domains
assert server_domain in container_2.domains
def test_pattern_container_and_dataset_domain_transformation_with_no_container(
mock_datahub_graph,
):
datahub_domain = builder.make_domain_urn("datahubproject.io")
acryl_domain = builder.make_domain_urn("acryl_domain")
server_domain = builder.make_domain_urn("server_domain")
def fake_get_aspect(
entity_urn: str,
aspect_type: Type[models.BrowsePathsV2Class],
version: int = 0,
) -> Optional[models.BrowsePathsV2Class]:
return None
pipeline_context = PipelineContext(
run_id="test_pattern_container_and_dataset_domain_transformation_with_no_container"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_aspect = fake_get_aspect # type: ignore
with_domain_aspect = make_generic_dataset_mcp(
aspect=models.DomainsClass(domains=[datahub_domain]), aspect_name="domains"
)
no_domain_aspect = make_generic_dataset_mcp(
entity_urn="urn:li:dataset:(urn:li:dataPlatform:bigquery,example2,PROD)"
)
inputs = [
with_domain_aspect,
no_domain_aspect,
EndOfStream(),
]
# Initialize the transformer with container support for domains
transformer = PatternAddDatasetDomain.create(
{
"domain_pattern": {
"rules": {
".*example1.*": [acryl_domain, server_domain],
".*example2.*": [server_domain],
}
},
"is_container": True, # Enable container domain handling
},
pipeline_context,
)
outputs = list(
transformer.transform([RecordEnvelope(input, metadata={}) for input in inputs])
)
assert len(outputs) == len(inputs) + 1
first_domain_aspect = outputs[0].record.aspect
assert first_domain_aspect
assert len(first_domain_aspect.domains) == 3
assert all(
domain in first_domain_aspect.domains
for domain in [datahub_domain, acryl_domain, server_domain]
)
second_domain_aspect = outputs[2].record.aspect
assert second_domain_aspect
assert len(second_domain_aspect.domains) == 1
assert server_domain in second_domain_aspect.domains
def test_pattern_add_container_dataset_domain_no_match(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
datahub_domain = builder.make_domain_urn("datahubproject.io")
pattern = "urn:li:dataset:\\(urn:li:dataPlatform:invalid,.*"
pipeline_context: PipelineContext = PipelineContext(
run_id="test_simple_add_dataset_domain"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
def fake_get_aspect(
entity_urn: str,
aspect_type: Type[models.BrowsePathsV2Class],
version: int = 0,
) -> models.BrowsePathsV2Class:
return models.BrowsePathsV2Class(
path=[
models.BrowsePathEntryClass(
id="container_1", urn="urn:li:container:container_1"
)
]
)
pipeline_context.graph.get_aspect = fake_get_aspect # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetDomain,
aspect=models.DomainsClass(domains=[datahub_domain]),
config={
"replace_existing": True,
"domain_pattern": {"rules": {pattern: [acryl_domain]}},
"is_container": True,
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 0
def run_pattern_dataset_schema_terms_transformation_semantics(
semantics: TransformerSemantics,
mock_datahub_graph: Callable[[DatahubClientConfig], DataHubGraph],
) -> List[RecordEnvelope]:
pipeline_context = PipelineContext(run_id="test_pattern_dataset_schema_terms")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# fake the server response
def fake_schema_metadata(entity_urn: str) -> models.SchemaMetadataClass:
return models.SchemaMetadataClass(
schemaName="customer", # not used
platform=builder.make_data_platform_urn(
"hive"
), # important <- platform must be an urn
version=0,
# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0
hash="",
# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
platformSchema=models.OtherSchemaClass(
rawSchema="__insert raw schema here__"
),
fields=[
models.SchemaFieldClass(
fieldPath="first_name",
glossaryTerms=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(
urn=builder.make_term_urn("pii")
)
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="mobile_number",
glossaryTerms=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(
urn=builder.make_term_urn("pii")
)
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
],
)
pipeline_context.graph.get_schema_metadata = fake_schema_metadata # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetSchemaTerms,
pipeline_context=pipeline_context,
config={
"semantics": semantics,
"term_pattern": {
"rules": {
".*first_name.*": [
builder.make_term_urn("Name"),
builder.make_term_urn("FirstName"),
],
".*last_name.*": [
builder.make_term_urn("Name"),
builder.make_term_urn("LastName"),
],
}
},
},
aspect=models.SchemaMetadataClass(
schemaName="customer", # not used
platform=builder.make_data_platform_urn(
"hive"
), # important <- platform must be an urn
version=0,
# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0
hash="",
# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
platformSchema=models.OtherSchemaClass(
rawSchema="__insert raw schema here__"
),
fields=[
models.SchemaFieldClass(
fieldPath="address",
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="first_name",
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="last_name",
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
],
),
)
return output
def test_pattern_dataset_schema_terms_transformation_patch(
mock_time, mock_datahub_graph
):
output = run_pattern_dataset_schema_terms_transformation_semantics(
TransformerSemantics.PATCH, mock_datahub_graph
)
assert len(output) == 2
# Check that glossary terms were added.
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.SchemaMetadataClass)
transform_aspect = cast(models.SchemaMetadataClass, output[0].record.aspect)
field_path_vs_field: Dict[str, models.SchemaFieldClass] = {
field.fieldPath: field for field in transform_aspect.fields
}
assert (
field_path_vs_field.get("mobile_number") is not None
) # server field should be preserved during patch
assert field_path_vs_field["first_name"].glossaryTerms is not None
assert len(field_path_vs_field["first_name"].glossaryTerms.terms) == 3
glossary_terms_urn = [
term.urn for term in field_path_vs_field["first_name"].glossaryTerms.terms
]
assert builder.make_term_urn("pii") in glossary_terms_urn
assert builder.make_term_urn("FirstName") in glossary_terms_urn
assert builder.make_term_urn("Name") in glossary_terms_urn
def test_pattern_dataset_schema_terms_transformation_overwrite(
mock_time, mock_datahub_graph
):
output = run_pattern_dataset_schema_terms_transformation_semantics(
TransformerSemantics.OVERWRITE, mock_datahub_graph
)
assert len(output) == 2
# Check that glossary terms were added.
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.SchemaMetadataClass)
transform_aspect = cast(models.SchemaMetadataClass, output[0].record.aspect)
field_path_vs_field: Dict[str, models.SchemaFieldClass] = {
field.fieldPath: field for field in transform_aspect.fields
}
assert (
field_path_vs_field.get("mobile_number") is None
) # server field should not be preserved during overwrite
assert field_path_vs_field["first_name"].glossaryTerms is not None
assert len(field_path_vs_field["first_name"].glossaryTerms.terms) == 2
glossary_terms_urn = [
term.urn for term in field_path_vs_field["first_name"].glossaryTerms.terms
]
assert builder.make_term_urn("pii") not in glossary_terms_urn
assert builder.make_term_urn("FirstName") in glossary_terms_urn
assert builder.make_term_urn("Name") in glossary_terms_urn
def run_pattern_dataset_schema_tags_transformation_semantics(
semantics: TransformerSemantics,
mock_datahub_graph: Callable[[DatahubClientConfig], DataHubGraph],
) -> List[RecordEnvelope]:
pipeline_context = PipelineContext(run_id="test_pattern_dataset_schema_terms")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# fake the server response
def fake_schema_metadata(entity_urn: str) -> models.SchemaMetadataClass:
return models.SchemaMetadataClass(
schemaName="customer", # not used
platform=builder.make_data_platform_urn(
"hive"
), # important <- platform must be an urn
version=0,
# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0
hash="",
# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
platformSchema=models.OtherSchemaClass(
rawSchema="__insert raw schema here__"
),
fields=[
models.SchemaFieldClass(
fieldPath="first_name",
globalTags=models.GlobalTagsClass(
tags=[
models.TagAssociationClass(tag=builder.make_tag_urn("pii"))
],
),
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="mobile_number",
globalTags=models.GlobalTagsClass(
tags=[
models.TagAssociationClass(tag=builder.make_tag_urn("pii"))
],
),
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
],
)
pipeline_context.graph.get_schema_metadata = fake_schema_metadata # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=PatternAddDatasetSchemaTags,
pipeline_context=pipeline_context,
config={
"semantics": semantics,
"tag_pattern": {
"rules": {
".*first_name.*": [
builder.make_tag_urn("Name"),
builder.make_tag_urn("FirstName"),
],
".*last_name.*": [
builder.make_tag_urn("Name"),
builder.make_tag_urn("LastName"),
],
}
},
},
aspect=models.SchemaMetadataClass(
schemaName="customer", # not used
platform=builder.make_data_platform_urn(
"hive"
), # important <- platform must be an urn
version=0,
# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0
hash="",
# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
platformSchema=models.OtherSchemaClass(
rawSchema="__insert raw schema here__"
),
fields=[
models.SchemaFieldClass(
fieldPath="address",
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="first_name",
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="last_name",
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
],
),
)
return output
def test_pattern_dataset_schema_tags_transformation_overwrite(
mock_time, mock_datahub_graph
):
output = run_pattern_dataset_schema_tags_transformation_semantics(
TransformerSemantics.OVERWRITE, mock_datahub_graph
)
assert len(output) == 2
# Check that glossary terms were added.
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.SchemaMetadataClass)
transform_aspect = cast(models.SchemaMetadataClass, output[0].record.aspect)
field_path_vs_field: Dict[str, models.SchemaFieldClass] = {
field.fieldPath: field for field in transform_aspect.fields
}
assert (
field_path_vs_field.get("mobile_number") is None
) # server field should not be preserved during overwrite
assert field_path_vs_field["first_name"].globalTags is not None
assert len(field_path_vs_field["first_name"].globalTags.tags) == 2
global_tags_urn = [
tag.tag for tag in field_path_vs_field["first_name"].globalTags.tags
]
assert builder.make_tag_urn("pii") not in global_tags_urn
assert builder.make_tag_urn("FirstName") in global_tags_urn
assert builder.make_tag_urn("Name") in global_tags_urn
def test_pattern_dataset_schema_tags_transformation_patch(
mock_time, mock_datahub_graph
):
output = run_pattern_dataset_schema_tags_transformation_semantics(
TransformerSemantics.PATCH, mock_datahub_graph
)
assert len(output) == 2
# Check that global tags were added.
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.SchemaMetadataClass)
transform_aspect = cast(models.SchemaMetadataClass, output[0].record.aspect)
field_path_vs_field: Dict[str, models.SchemaFieldClass] = {
field.fieldPath: field for field in transform_aspect.fields
}
assert (
field_path_vs_field.get("mobile_number") is not None
) # server field should be preserved during patch
assert field_path_vs_field["first_name"].globalTags is not None
assert len(field_path_vs_field["first_name"].globalTags.tags) == 3
global_tags_urn = [
tag.tag for tag in field_path_vs_field["first_name"].globalTags.tags
]
assert builder.make_tag_urn("pii") in global_tags_urn
assert builder.make_tag_urn("FirstName") in global_tags_urn
assert builder.make_tag_urn("Name") in global_tags_urn
def test_simple_dataset_data_product_transformation(mock_time):
transformer = SimpleAddDatasetDataProduct.create(
{
"dataset_to_data_product_urns": {
builder.make_dataset_urn(
"bigquery", "example1"
): "urn:li:dataProduct:first",
builder.make_dataset_urn(
"bigquery", "example2"
): "urn:li:dataProduct:second",
builder.make_dataset_urn(
"bigquery", "example3"
): "urn:li:dataProduct:first",
}
},
PipelineContext(run_id="test-dataproduct"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [
make_generic_dataset(
entity_urn=builder.make_dataset_urn("bigquery", "example1")
),
make_generic_dataset(
entity_urn=builder.make_dataset_urn("bigquery", "example2")
),
make_generic_dataset(
entity_urn=builder.make_dataset_urn("bigquery", "example3")
),
EndOfStream(),
]
]
)
)
assert len(outputs) == 6
# Check new dataproduct entity should be there
assert outputs[3].record.entityUrn == "urn:li:dataProduct:first"
assert outputs[3].record.aspectName == "dataProductProperties"
first_data_product_aspect = json.loads(
outputs[3].record.aspect.value.decode("utf-8")
)
assert [item["value"]["destinationUrn"] for item in first_data_product_aspect] == [
builder.make_dataset_urn("bigquery", "example1"),
builder.make_dataset_urn("bigquery", "example3"),
]
second_data_product_aspect = json.loads(
outputs[4].record.aspect.value.decode("utf-8")
)
assert [item["value"]["destinationUrn"] for item in second_data_product_aspect] == [
builder.make_dataset_urn("bigquery", "example2")
]
assert isinstance(outputs[5].record, EndOfStream)
def test_pattern_dataset_data_product_transformation(mock_time):
transformer = PatternAddDatasetDataProduct.create(
{
"dataset_to_data_product_urns_pattern": {
"rules": {
".*example1.*": "urn:li:dataProduct:first",
".*": "urn:li:dataProduct:second",
}
},
},
PipelineContext(run_id="test-dataproducts"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [
make_generic_dataset(
entity_urn=builder.make_dataset_urn("bigquery", "example1")
),
make_generic_dataset(
entity_urn=builder.make_dataset_urn("bigquery", "example2")
),
make_generic_dataset(
entity_urn=builder.make_dataset_urn("bigquery", "example3")
),
EndOfStream(),
]
]
)
)
assert len(outputs) == 6
# Check new dataproduct entity should be there
assert outputs[3].record.entityUrn == "urn:li:dataProduct:first"
assert outputs[3].record.aspectName == "dataProductProperties"
first_data_product_aspect = json.loads(
outputs[3].record.aspect.value.decode("utf-8")
)
assert [item["value"]["destinationUrn"] for item in first_data_product_aspect] == [
builder.make_dataset_urn("bigquery", "example1")
]
second_data_product_aspect = json.loads(
outputs[4].record.aspect.value.decode("utf-8")
)
assert [item["value"]["destinationUrn"] for item in second_data_product_aspect] == [
builder.make_dataset_urn("bigquery", "example2"),
builder.make_dataset_urn("bigquery", "example3"),
]
assert isinstance(outputs[5].record, EndOfStream)
def dummy_data_product_resolver_method(dataset_urn):
dataset_to_data_product_map = {
builder.make_dataset_urn("bigquery", "example1"): "urn:li:dataProduct:first"
}
return dataset_to_data_product_map.get(dataset_urn)
def test_add_dataset_data_product_transformation():
transformer = AddDatasetDataProduct.create(
{
"get_data_product_to_add": "tests.unit.test_transform_dataset.dummy_data_product_resolver_method"
},
PipelineContext(run_id="test-dataproduct"),
)
outputs = list(
transformer.transform(
[
RecordEnvelope(input, metadata={})
for input in [make_generic_dataset(), EndOfStream()]
]
)
)
# Check new dataproduct entity should be there
assert outputs[1].record.entityUrn == "urn:li:dataProduct:first"
assert outputs[1].record.aspectName == "dataProductProperties"
first_data_product_aspect = json.loads(
outputs[1].record.aspect.value.decode("utf-8")
)
assert [item["value"]["destinationUrn"] for item in first_data_product_aspect] == [
builder.make_dataset_urn("bigquery", "example1")
]
def _test_clean_owner_urns(
in_pipeline_context: Any,
in_owners: List[str],
config: List[Union[re.Pattern, str]],
cleaned_owner_urn: List[str],
) -> None:
# Return fake aspect to simulate server behaviour
def fake_ownership_class(entity_urn: str) -> models.OwnershipClass:
return models.OwnershipClass(
owners=[
models.OwnerClass(owner=owner, type=models.OwnershipTypeClass.DATAOWNER)
for owner in in_owners
]
)
in_pipeline_context.graph.get_ownership = fake_ownership_class # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=PatternCleanUpOwnership,
aspect=models.OwnershipClass(
owners=[
models.OwnerClass(owner=owner, type=models.OwnershipTypeClass.DATAOWNER)
for owner in in_owners
]
),
config={"pattern_for_cleanup": config},
pipeline_context=in_pipeline_context,
)
assert len(output) == 2
ownership_aspect = output[0].record.aspect
assert isinstance(ownership_aspect, OwnershipClass)
assert len(ownership_aspect.owners) == len(in_owners)
out_owners = [owner.owner for owner in ownership_aspect.owners]
assert set(out_owners) == set(cleaned_owner_urn)
def test_clean_owner_urn_transformation_remove_fixed_string(mock_datahub_graph):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# remove 'ABCDEF:'
config: List[Union[re.Pattern, str]] = ["ABCDEF:"]
expected_user_emails: List[str] = [
"email_id@example.com",
"123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
expected_owner_urns: List[str] = []
for user in expected_user_emails:
expected_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, expected_owner_urns)
def test_clean_owner_urn_transformation_remove_multiple_values(mock_datahub_graph):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# remove multiple values
config: List[Union[re.Pattern, str]] = ["ABCDEF:", "email"]
expected_user_emails: List[str] = [
"_id@example.com",
"123_id@example.com",
"_id@example.co.in",
"_id@example.co.uk",
"_test:XYZ@example.com",
"_id:id1@example.com",
"_id:id2@example.com",
]
expected_owner_urns: List[str] = []
for user in expected_user_emails:
expected_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, expected_owner_urns)
def test_clean_owner_urn_transformation_remove_values_using_regex(mock_datahub_graph):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# remove words after `_` using RegEx i.e. `id`, `test`
config: List[Union[re.Pattern, str]] = [r"(?<=_)(\w+)"]
expected_user_emails: List[str] = [
"ABCDEF:email_@example.com",
"ABCDEF:123email_@example.com",
"email_@example.co.in",
"email_@example.co.uk",
"email_:XYZ@example.com",
"email_:id1@example.com",
"email_:id2@example.com",
]
expected_owner_urns: List[str] = []
for user in expected_user_emails:
expected_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, expected_owner_urns)
def test_clean_owner_urn_transformation_remove_digits(mock_datahub_graph):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# remove digits
config: List[Union[re.Pattern, str]] = [r"\d+"]
expected_user_emails: List[str] = [
"ABCDEF:email_id@example.com",
"ABCDEF:email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id@example.com",
"email_id:id@example.com",
]
expected_owner_urns: List[str] = []
for user in expected_user_emails:
expected_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, expected_owner_urns)
def test_clean_owner_urn_transformation_remove_pattern(mock_datahub_graph):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# remove `example.*`
config: List[Union[re.Pattern, str]] = [r"@example\.\S*"]
expected_user_emails: List[str] = [
"ABCDEF:email_id",
"ABCDEF:123email_id",
"email_id",
"email_id",
"email_test:XYZ",
"email_id:id1",
"email_id:id2",
]
expected_owner_urns: List[str] = []
for user in expected_user_emails:
expected_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, expected_owner_urns)
def test_clean_owner_urn_transformation_remove_word_in_capital_letters(
mock_datahub_graph,
):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
"email_test:XYabZ@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# if string between `:` and `@` is in CAPITAL then remove it
config: List[Union[re.Pattern, str]] = ["(?<=:)[A-Z]+(?=@)"]
expected_user_emails: List[str] = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
"email_test:XYabZ@example.com",
]
expected_owner_urns: List[str] = []
for user in expected_user_emails:
expected_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, expected_owner_urns)
def test_clean_owner_urn_transformation_remove_pattern_with_alphanumeric_value(
mock_datahub_graph,
):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# remove any pattern having `id` followed by any digits
config: List[Union[re.Pattern, str]] = [r"id\d+"]
expected_user_emails: List[str] = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:@example.com",
"email_id:@example.com",
]
expected_owner_urns: List[str] = []
for user in expected_user_emails:
expected_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, expected_owner_urns)
def test_clean_owner_urn_transformation_should_not_remove_system_identifier(
mock_datahub_graph,
):
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
user_emails = [
"ABCDEF:email_id@example.com",
"ABCDEF:123email_id@example.com",
"email_id@example.co.in",
"email_id@example.co.uk",
"email_test:XYZ@example.com",
"email_id:id1@example.com",
"email_id:id2@example.com",
]
in_owner_urns: List[str] = []
for user in user_emails:
in_owner_urns.append(
builder.make_owner_urn(user, owner_type=builder.OwnerType.USER)
)
# should not remove system identifier
config: List[Union[re.Pattern, str]] = ["urn:li:corpuser:"]
_test_clean_owner_urns(pipeline_context, in_owner_urns, config, in_owner_urns)
def test_replace_external_url_word_replace(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_replace_external_url"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=ReplaceExternalUrlDataset,
aspect=models.DatasetPropertiesClass(
externalUrl="https://github.com/datahub/looker-demo/blob/master/foo.view.lkml",
customProperties=EXISTING_PROPERTIES.copy(),
),
config={"input_pattern": "datahub", "replacement": "starhub"},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert (
output[0].record.aspect.externalUrl
== "https://github.com/starhub/looker-demo/blob/master/foo.view.lkml"
)
def test_replace_external_regex_replace_1(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_replace_external_url"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=ReplaceExternalUrlDataset,
aspect=models.DatasetPropertiesClass(
externalUrl="https://github.com/datahub/looker-demo/blob/master/foo.view.lkml",
customProperties=EXISTING_PROPERTIES.copy(),
),
config={"input_pattern": r"datahub/.*/", "replacement": "starhub/test/"},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert (
output[0].record.aspect.externalUrl
== "https://github.com/starhub/test/foo.view.lkml"
)
def test_replace_external_regex_replace_2(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_replace_external_url"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_dataset_transformer_pipeline(
transformer_type=ReplaceExternalUrlDataset,
aspect=models.DatasetPropertiesClass(
externalUrl="https://github.com/datahub/looker-demo/blob/master/foo.view.lkml",
customProperties=EXISTING_PROPERTIES.copy(),
),
config={"input_pattern": r"\b\w*hub\b", "replacement": "test"},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert (
output[0].record.aspect.externalUrl
== "https://test.com/test/looker-demo/blob/master/foo.view.lkml"
)
def test_pattern_cleanup_usage_statistics_user_1(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_pattern_cleanup_usage_statistics_user"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
TS_1 = datetime(year=2023, month=1, day=1, tzinfo=timezone.utc)
output = run_dataset_transformer_pipeline(
transformer_type=PatternCleanupDatasetUsageUser,
aspect=models.DatasetUsageStatisticsClass(
timestampMillis=int(TS_1.timestamp() * 1000),
userCounts=[
DatasetUserUsageCountsClass(
user=builder.make_user_urn("IAM:user1"),
count=1,
userEmail="user1@exaple.com",
),
DatasetUserUsageCountsClass(
user=builder.make_user_urn("user2"),
count=2,
userEmail="user2@exaple.com",
),
],
),
config={"pattern_for_cleanup": ["IAM:"]},
pipeline_context=pipeline_context,
)
expectedUsageStatistics = models.DatasetUsageStatisticsClass(
timestampMillis=int(TS_1.timestamp() * 1000),
userCounts=[
DatasetUserUsageCountsClass(
user=builder.make_user_urn("user1"),
count=1,
userEmail="user1@exaple.com",
),
DatasetUserUsageCountsClass(
user=builder.make_user_urn("user2"),
count=2,
userEmail="user2@exaple.com",
),
],
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert len(output[0].record.aspect.userCounts) == 2
assert output[0].record.aspect.userCounts == expectedUsageStatistics.userCounts
def test_pattern_cleanup_usage_statistics_user_2(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_pattern_cleanup_usage_statistics_user"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
TS_1 = datetime(year=2023, month=1, day=1, tzinfo=timezone.utc)
output = run_dataset_transformer_pipeline(
transformer_type=PatternCleanupDatasetUsageUser,
aspect=models.DatasetUsageStatisticsClass(
timestampMillis=int(TS_1.timestamp() * 1000),
userCounts=[
DatasetUserUsageCountsClass(
user=builder.make_user_urn("test_user_1"),
count=1,
userEmail="user1@exaple.com",
),
DatasetUserUsageCountsClass(
user=builder.make_user_urn("test_user_2"),
count=2,
userEmail="user2@exaple.com",
),
],
),
config={"pattern_for_cleanup": ["_user"]},
pipeline_context=pipeline_context,
)
expectedUsageStatistics = models.DatasetUsageStatisticsClass(
timestampMillis=int(TS_1.timestamp() * 1000),
userCounts=[
DatasetUserUsageCountsClass(
user=builder.make_user_urn("test_1"),
count=1,
userEmail="user1@exaple.com",
),
DatasetUserUsageCountsClass(
user=builder.make_user_urn("test_2"),
count=2,
userEmail="user2@exaple.com",
),
],
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert len(output[0].record.aspect.userCounts) == 2
assert output[0].record.aspect.userCounts == expectedUsageStatistics.userCounts
def test_pattern_cleanup_usage_statistics_user_3(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_pattern_cleanup_usage_statistics_user"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
TS_1 = datetime(year=2023, month=1, day=1, tzinfo=timezone.utc)
output = run_dataset_transformer_pipeline(
transformer_type=PatternCleanupDatasetUsageUser,
aspect=models.DatasetUsageStatisticsClass(
timestampMillis=int(TS_1.timestamp() * 1000),
userCounts=[
DatasetUserUsageCountsClass(
user=builder.make_user_urn("abc_user_1"),
count=1,
userEmail="user1@exaple.com",
),
DatasetUserUsageCountsClass(
user=builder.make_user_urn("xyz_user_2"),
count=2,
userEmail="user2@exaple.com",
),
],
),
config={"pattern_for_cleanup": [r"_user_\d+"]},
pipeline_context=pipeline_context,
)
expectedUsageStatistics = models.DatasetUsageStatisticsClass(
timestampMillis=int(TS_1.timestamp() * 1000),
userCounts=[
DatasetUserUsageCountsClass(
user=builder.make_user_urn("abc"),
count=1,
userEmail="user1@exaple.com",
),
DatasetUserUsageCountsClass(
user=builder.make_user_urn("xyz"),
count=2,
userEmail="user2@exaple.com",
),
],
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert len(output[0].record.aspect.userCounts) == 2
assert output[0].record.aspect.userCounts == expectedUsageStatistics.userCounts
def test_domain_mapping_based_on_tags_with_valid_tags(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
server_domain = builder.make_domain_urn("test.io")
tag_one = builder.make_tag_urn("test:tag_1")
# Return fake aspect to simulate server behaviour
def fake_get_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(tags=[TagAssociationClass(tag=tag_one)])
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_tags = fake_get_tags # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=DatasetTagDomainMapper,
aspect=models.DomainsClass(domains=[server_domain]),
config={"domain_mapping": {"test:tag_1": acryl_domain}},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0] is not None
assert output[0].record is not None
assert isinstance(output[0].record, MetadataChangeProposalWrapper)
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 1
assert acryl_domain in transformed_aspect.domains
assert server_domain not in transformed_aspect.domains
def test_domain_mapping_based_on_tags_with_no_matching_tags(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
server_domain = builder.make_domain_urn("test.io")
non_matching_tag = builder.make_tag_urn("nonMatching")
pipeline_context = PipelineContext(run_id="no_match_pipeline")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(tags=[TagAssociationClass(tag=non_matching_tag)])
pipeline_context.graph.get_tags = fake_get_tags # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=DatasetTagDomainMapper,
aspect=models.DomainsClass(domains=[server_domain]),
config={
"domain_mapping": {"test:tag_1": acryl_domain},
},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert isinstance(output[0].record.aspect, models.DomainsClass)
assert len(output[0].record.aspect.domains) == 1
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 1
assert acryl_domain not in transformed_aspect.domains
assert server_domain in transformed_aspect.domains
def test_domain_mapping_based_on_tags_with_empty_config(mock_datahub_graph):
some_tag = builder.make_tag_urn("someTag")
pipeline_context = PipelineContext(run_id="empty_config_pipeline")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(tags=[TagAssociationClass(tag=some_tag)])
pipeline_context.graph.get_tags = fake_get_tags # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=DatasetTagDomainMapper,
aspect=models.DomainsClass(domains=[]),
config={"domain_mapping": {}},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert isinstance(output[0].record.aspect, models.DomainsClass)
assert len(output[0].record.aspect.domains) == 0
def test_domain_mapping_based__r_on_tags_with_multiple_tags(mock_datahub_graph):
# Two tags that match different rules in the domain mapping configuration
tag_one = builder.make_tag_urn("test:tag_1")
tag_two = builder.make_tag_urn("test:tag_2")
existing_domain = builder.make_domain_urn("existing.io")
finance = builder.make_domain_urn("finance")
hr = builder.make_domain_urn("hr")
pipeline_context = PipelineContext(run_id="multiple_matches_pipeline")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(
tags=[TagAssociationClass(tag=tag_one), TagAssociationClass(tag=tag_two)]
)
# Return fake aspect to simulate server behaviour
def fake_get_domain(entity_urn: str) -> models.DomainsClass:
return models.DomainsClass(domains=[existing_domain])
pipeline_context.graph.get_tags = fake_get_tags # type: ignore
pipeline_context.graph.get_domain = fake_get_domain # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=DatasetTagDomainMapper,
aspect=models.DomainsClass(domains=[existing_domain]),
config={
"domain_mapping": {"test:tag_1": finance, "test:tag_2": hr},
"semantics": "PATCH",
},
pipeline_context=pipeline_context,
)
# Assertions to verify the expected outcome
assert len(output) == 2
assert output[0].record is not None
assert output[0].record.aspect is not None
assert isinstance(output[0].record.aspect, models.DomainsClass)
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
# Expecting domains from both matched tags
assert set(output[0].record.aspect.domains) == {existing_domain, finance, hr}
assert len(transformed_aspect.domains) == 3
def test_domain_mapping_based_on_tags_with_empty_tags(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
server_domain = builder.make_domain_urn("test.io")
pipeline_context = PipelineContext(run_id="empty_config_pipeline")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(tags=[])
pipeline_context.graph.get_tags = fake_get_tags # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=DatasetTagDomainMapper,
aspect=models.DomainsClass(domains=[acryl_domain]),
config={"domain_mapping": {"test:tag_1": server_domain}},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert isinstance(output[0].record.aspect, models.DomainsClass)
assert len(output[0].record.aspect.domains) == 1
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 1
assert acryl_domain in transformed_aspect.domains
assert server_domain not in transformed_aspect.domains
def test_domain_mapping_based_on_tags_with_no_tags(mock_datahub_graph):
acryl_domain = builder.make_domain_urn("acryl.io")
server_domain = builder.make_domain_urn("test.io")
pipeline_context = PipelineContext(run_id="empty_config_pipeline")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
# Return fake aspect to simulate server behaviour
def fake_get_tags(entity_urn: str) -> Optional[models.GlobalTagsClass]:
return None
pipeline_context.graph.get_tags = fake_get_tags # type: ignore
output = run_dataset_transformer_pipeline(
transformer_type=DatasetTagDomainMapper,
aspect=models.DomainsClass(domains=[acryl_domain]),
config={"domain_mapping": {"test:tag_1": server_domain}},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert isinstance(output[0].record.aspect, models.DomainsClass)
assert len(output[0].record.aspect.domains) == 1
transformed_aspect = cast(models.DomainsClass, output[0].record.aspect)
assert len(transformed_aspect.domains) == 1
assert acryl_domain in transformed_aspect.domains
assert server_domain not in transformed_aspect.domains
def test_tags_to_terms_transformation(mock_datahub_graph):
# Create domain URNs for the test
term_urn_example1 = builder.make_term_urn("example1")
term_urn_example2 = builder.make_term_urn("example2")
def fake_get_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(
tags=[
TagAssociationClass(tag=builder.make_tag_urn("example1")),
TagAssociationClass(tag=builder.make_tag_urn("example2")),
]
)
# fake the server response
def fake_schema_metadata(entity_urn: str) -> models.SchemaMetadataClass:
return models.SchemaMetadataClass(
schemaName="customer", # not used
platform=builder.make_data_platform_urn(
"hive"
), # important <- platform must be an urn
version=0,
# when the source system has a notion of versioning of schemas, insert this in, otherwise leave as 0
hash="",
# when the source system has a notion of unique schemas identified via hash, include a hash, else leave it as empty string
platformSchema=models.OtherSchemaClass(
rawSchema="__insert raw schema here__"
),
fields=[
models.SchemaFieldClass(
fieldPath="first_name",
globalTags=models.GlobalTagsClass(
tags=[
models.TagAssociationClass(
tag=builder.make_tag_urn("example2")
)
],
),
glossaryTerms=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(
urn=builder.make_term_urn("pii")
)
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
models.SchemaFieldClass(
fieldPath="mobile_number",
glossaryTerms=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(
urn=builder.make_term_urn("pii")
)
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
type=models.SchemaFieldDataTypeClass(type=models.StringTypeClass()),
nativeDataType="VARCHAR(100)",
# use this to provide the type of the field in the source system's vernacular
),
],
)
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_tags = fake_get_tags # type: ignore
pipeline_context.graph.get_schema_metadata = fake_schema_metadata # type: ignore
# Configuring the transformer
config = {"tags": ["example1", "example2"]}
# Running the transformer within a test pipeline
output = run_dataset_transformer_pipeline(
transformer_type=TagsToTermMapper,
aspect=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(urn=builder.make_term_urn("pii"))
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
config=config,
pipeline_context=pipeline_context,
)
# Expected results
expected_terms = [term_urn_example2, term_urn_example1]
# Verify the output
assert len(output) == 2 # One for result and one for end of stream
terms_aspect = output[0].record.aspect
assert isinstance(terms_aspect, models.GlossaryTermsClass)
assert len(terms_aspect.terms) == len(expected_terms)
assert set(term.urn for term in terms_aspect.terms) == {
"urn:li:glossaryTerm:example1",
"urn:li:glossaryTerm:example2",
}
def test_tags_to_terms_with_no_matching_terms(mock_datahub_graph):
# Setup for test where no tags match the provided term mappings
def fake_get_tags_no_match(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(
tags=[
TagAssociationClass(tag=builder.make_tag_urn("nonMatchingTag1")),
TagAssociationClass(tag=builder.make_tag_urn("nonMatchingTag2")),
]
)
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_tags = fake_get_tags_no_match # type: ignore
# No matching terms in config
config = {"tags": ["example1", "example2"]}
# Running the transformer within a test pipeline
output = run_dataset_transformer_pipeline(
transformer_type=TagsToTermMapper,
aspect=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(urn=builder.make_term_urn("pii"))
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
config=config,
pipeline_context=pipeline_context,
)
# Verify the output
assert len(output) == 2 # One for result and one for end of stream
terms_aspect = output[0].record.aspect
assert isinstance(terms_aspect, models.GlossaryTermsClass)
assert len(terms_aspect.terms) == 1
def test_tags_to_terms_with_missing_tags(mock_datahub_graph):
# Setup for test where no tags are present
def fake_get_no_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(tags=[])
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_tags = fake_get_no_tags # type: ignore
config = {"tags": ["example1", "example2"]}
# Running the transformer with no tags
output = run_dataset_transformer_pipeline(
transformer_type=TagsToTermMapper,
aspect=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(urn=builder.make_term_urn("pii"))
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
config=config,
pipeline_context=pipeline_context,
)
# Verify that no terms are added when there are no tags
assert len(output) == 2
terms_aspect = output[0].record.aspect
assert isinstance(terms_aspect, models.GlossaryTermsClass)
assert len(terms_aspect.terms) == 1
def test_tags_to_terms_with_partial_match(mock_datahub_graph):
# Setup for partial match scenario
def fake_get_partial_match_tags(entity_urn: str) -> models.GlobalTagsClass:
return models.GlobalTagsClass(
tags=[
TagAssociationClass(
tag=builder.make_tag_urn("example1")
), # Should match
TagAssociationClass(
tag=builder.make_tag_urn("nonMatchingTag")
), # No match
]
)
pipeline_context = PipelineContext(run_id="transformer_pipe_line")
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig())
pipeline_context.graph.get_tags = fake_get_partial_match_tags # type: ignore
config = {"tags": ["example1"]} # Only 'example1' has a term mapped
# Running the transformer with partial matching tags
output = run_dataset_transformer_pipeline(
transformer_type=TagsToTermMapper,
aspect=models.GlossaryTermsClass(
terms=[
models.GlossaryTermAssociationClass(urn=builder.make_term_urn("pii"))
],
auditStamp=models.AuditStampClass._construct_with_defaults(),
),
config=config,
pipeline_context=pipeline_context,
)
# Verify that only matched term is added
assert len(output) == 2
terms_aspect = output[0].record.aspect
assert isinstance(terms_aspect, models.GlossaryTermsClass)
assert len(terms_aspect.terms) == 1
assert terms_aspect.terms[0].urn == "urn:li:glossaryTerm:example1"
def test_replace_external_url_container_word_replace(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_replace_external_url_container"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_container_transformer_pipeline(
transformer_type=ReplaceExternalUrlContainer,
aspect=models.ContainerPropertiesClass(
externalUrl="https://github.com/datahub/looker-demo/blob/master/foo.view.lkml",
customProperties=EXISTING_PROPERTIES.copy(),
name="sample_test",
),
config={"input_pattern": "datahub", "replacement": "starhub"},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert (
output[0].record.aspect.externalUrl
== "https://github.com/starhub/looker-demo/blob/master/foo.view.lkml"
)
def test_replace_external_regex_container_replace_1(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_replace_external_url_container"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_container_transformer_pipeline(
transformer_type=ReplaceExternalUrlContainer,
aspect=models.ContainerPropertiesClass(
externalUrl="https://github.com/datahub/looker-demo/blob/master/foo.view.lkml",
customProperties=EXISTING_PROPERTIES.copy(),
name="sample_test",
),
config={"input_pattern": r"datahub/.*/", "replacement": "starhub/test/"},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert (
output[0].record.aspect.externalUrl
== "https://github.com/starhub/test/foo.view.lkml"
)
def test_replace_external_regex_container_replace_2(
mock_datahub_graph,
):
pipeline_context: PipelineContext = PipelineContext(
run_id="test_replace_external_url_container"
)
pipeline_context.graph = mock_datahub_graph(DatahubClientConfig)
output = run_container_transformer_pipeline(
transformer_type=ReplaceExternalUrlContainer,
aspect=models.ContainerPropertiesClass(
externalUrl="https://github.com/datahub/looker-demo/blob/master/foo.view.lkml",
customProperties=EXISTING_PROPERTIES.copy(),
name="sample_test",
),
config={"input_pattern": r"\b\w*hub\b", "replacement": "test"},
pipeline_context=pipeline_context,
)
assert len(output) == 2
assert output[0].record
assert output[0].record.aspect
assert (
output[0].record.aspect.externalUrl
== "https://test.com/test/looker-demo/blob/master/foo.view.lkml"
)