datahub/metadata-ingestion/tests/unit/test_kafka_source.py

277 lines
9.3 KiB
Python
Raw Normal View History

2021-02-11 23:14:20 -08:00
import unittest
from unittest.mock import MagicMock, patch
import pytest
from confluent_kafka.schema_registry.schema_registry_client import (
RegisteredSchema,
Schema,
)
from datahub.configuration.common import ConfigurationError
from datahub.emitter.mce_builder import (
make_dataplatform_instance_urn,
make_dataset_urn_with_platform_instance,
)
2021-02-15 15:04:21 -08:00
from datahub.ingestion.api.common import PipelineContext
from datahub.ingestion.source.kafka import KafkaSource
from datahub.metadata.com.linkedin.pegasus2avro.mxe import MetadataChangeEvent
from datahub.metadata.schema_classes import BrowsePathsClass, DataPlatformInstanceClass
2021-02-10 14:53:55 -08:00
2021-01-31 22:40:30 -08:00
class KafkaSourceTest(unittest.TestCase):
def test_get_schema_str_replace_confluent_ref_avro(self):
# References external schema 'TestTopic1' in the definition of 'my_field1' field.
schema_str_orig = """
{
"fields": [
{
"name": "my_field1",
"type": "TestTopic1"
}
],
"name": "TestTopic1Val",
"namespace": "io.acryl",
"type": "record"
}
"""
schema_str_ref = """
{
"doc": "Sample schema to help you get started.",
"fields": [
{
"doc": "The int type is a 32-bit signed integer.",
"name": "my_field1",
"type": "int"
}
],
"name": "TestTopic1",
"namespace": "io.acryl",
"type": "record"
}
"""
schema_str_final = (
"""
{
"fields": [
{
"name": "my_field1",
"type": """
+ schema_str_ref
+ """
}
],
"name": "TestTopic1Val",
"namespace": "io.acryl",
"type": "record"
}
"""
)
ctx = PipelineContext(run_id="test")
kafka_source = KafkaSource.create(
{
"connection": {"bootstrap": "localhost:9092"},
},
ctx,
)
def new_get_latest_version(_):
return RegisteredSchema(
schema_id="schema_id_1",
schema=Schema(schema_str=schema_str_ref, schema_type="AVRO"),
subject="test",
version=1,
)
with patch.object(
kafka_source.schema_registry_client,
"get_latest_version",
new_get_latest_version,
):
schema_str = kafka_source.get_schema_str_replace_confluent_ref_avro(
# The external reference would match by name.
schema=Schema(
schema_str=schema_str_orig,
schema_type="AVRO",
references=[
dict(name="TestTopic1", subject="schema_subject_1", version=1)
],
)
)
assert schema_str == KafkaSource._compact_schema(schema_str_final)
with patch.object(
kafka_source.schema_registry_client,
"get_latest_version",
new_get_latest_version,
):
schema_str = kafka_source.get_schema_str_replace_confluent_ref_avro(
# The external reference would match by subject.
schema=Schema(
schema_str=schema_str_orig,
schema_type="AVRO",
references=[
dict(name="schema_subject_1", subject="TestTopic1", version=1)
],
)
)
assert schema_str == KafkaSource._compact_schema(schema_str_final)
@patch("datahub.ingestion.source.kafka.confluent_kafka.Consumer", autospec=True)
2021-01-31 22:40:30 -08:00
def test_kafka_source_configuration(self, mock_kafka):
2021-02-11 22:48:20 -08:00
ctx = PipelineContext(run_id="test")
kafka_source = KafkaSource.create(
{"connection": {"bootstrap": "foobar:9092"}}, ctx
)
kafka_source.close()
2021-01-31 22:40:30 -08:00
assert mock_kafka.call_count == 1
@patch("datahub.ingestion.source.kafka.confluent_kafka.Consumer", autospec=True)
2021-01-31 22:40:30 -08:00
def test_kafka_source_workunits_wildcard_topic(self, mock_kafka):
mock_kafka_instance = mock_kafka.return_value
mock_cluster_metadata = MagicMock()
mock_cluster_metadata.topics = ["foobar", "bazbaz"]
2021-02-11 16:00:29 -08:00
mock_kafka_instance.list_topics.return_value = mock_cluster_metadata
2021-01-31 22:40:30 -08:00
2021-02-11 22:48:20 -08:00
ctx = PipelineContext(run_id="test")
kafka_source = KafkaSource.create(
{"connection": {"bootstrap": "localhost:9092"}}, ctx
)
workunits = list(kafka_source.get_workunits())
2021-01-31 22:40:30 -08:00
first_mce = workunits[0].metadata
2021-02-10 14:53:55 -08:00
assert isinstance(first_mce, MetadataChangeEvent)
2021-01-31 22:40:30 -08:00
mock_kafka.assert_called_once()
mock_kafka_instance.list_topics.assert_called_once()
assert len(workunits) == 2
@patch("datahub.ingestion.source.kafka.confluent_kafka.Consumer", autospec=True)
2021-01-31 22:40:30 -08:00
def test_kafka_source_workunits_topic_pattern(self, mock_kafka):
mock_kafka_instance = mock_kafka.return_value
mock_cluster_metadata = MagicMock()
mock_cluster_metadata.topics = ["test", "foobar", "bazbaz"]
2021-02-11 16:00:29 -08:00
mock_kafka_instance.list_topics.return_value = mock_cluster_metadata
2021-01-31 22:40:30 -08:00
2021-02-11 22:48:20 -08:00
ctx = PipelineContext(run_id="test1")
kafka_source = KafkaSource.create(
{
"topic_patterns": {"allow": ["test"]},
"connection": {"bootstrap": "localhost:9092"},
},
ctx,
)
2021-01-31 22:40:30 -08:00
workunits = [w for w in kafka_source.get_workunits()]
mock_kafka.assert_called_once()
mock_kafka_instance.list_topics.assert_called_once()
assert len(workunits) == 1
mock_cluster_metadata.topics = ["test", "test2", "bazbaz"]
2021-02-11 22:48:20 -08:00
ctx = PipelineContext(run_id="test2")
kafka_source = KafkaSource.create(
{
"topic_patterns": {"allow": ["test.*"]},
"connection": {"bootstrap": "localhost:9092"},
},
ctx,
)
2021-01-31 22:40:30 -08:00
workunits = [w for w in kafka_source.get_workunits()]
assert len(workunits) == 2
@patch("datahub.ingestion.source.kafka.confluent_kafka.Consumer", autospec=True)
def test_kafka_source_workunits_with_platform_instance(self, mock_kafka):
PLATFORM_INSTANCE = "kafka_cluster"
PLATFORM = "kafka"
TOPIC_NAME = "test"
mock_kafka_instance = mock_kafka.return_value
mock_cluster_metadata = MagicMock()
mock_cluster_metadata.topics = [TOPIC_NAME]
mock_kafka_instance.list_topics.return_value = mock_cluster_metadata
ctx = PipelineContext(run_id="test1")
kafka_source = KafkaSource.create(
{
"connection": {"bootstrap": "localhost:9092"},
"platform_instance": PLATFORM_INSTANCE,
},
ctx,
)
workunits = [w for w in kafka_source.get_workunits()]
# We should only have 1 topic
assert len(workunits) == 1
proposed_snap = workunits[0].metadata.proposedSnapshot
assert proposed_snap.urn == make_dataset_urn_with_platform_instance(
platform=PLATFORM,
name=TOPIC_NAME,
platform_instance=PLATFORM_INSTANCE,
env="PROD",
)
# DataPlatform aspect should be present when platform_instance is configured
data_platform_aspects = [
asp
for asp in proposed_snap.aspects
if type(asp) == DataPlatformInstanceClass
]
assert len(data_platform_aspects) == 1
assert data_platform_aspects[0].instance == make_dataplatform_instance_urn(
PLATFORM, PLATFORM_INSTANCE
)
# The default browse path should include the platform_instance value
browse_path_aspects = [
asp for asp in proposed_snap.aspects if type(asp) == BrowsePathsClass
]
assert len(browse_path_aspects) == 1
assert (
f"/prod/{PLATFORM}/{PLATFORM_INSTANCE}/{TOPIC_NAME}"
in browse_path_aspects[0].paths
)
@patch("datahub.ingestion.source.kafka.confluent_kafka.Consumer", autospec=True)
2021-01-31 22:40:30 -08:00
def test_close(self, mock_kafka):
mock_kafka_instance = mock_kafka.return_value
2021-02-11 22:48:20 -08:00
ctx = PipelineContext(run_id="test")
kafka_source = KafkaSource.create(
{
"topic_patterns": {"allow": ["test.*"]},
"connection": {"bootstrap": "localhost:9092"},
},
ctx,
2021-02-11 22:48:20 -08:00
)
2021-01-31 22:40:30 -08:00
kafka_source.close()
assert mock_kafka_instance.close.call_count == 1
def test_kafka_source_stateful_ingestion_requires_platform_instance(
self,
):
class StatefulProviderMock:
def __init__(self, config, ctx):
self.ctx = ctx
self.config = config
def is_stateful_ingestion_configured(self):
return self.config.stateful_ingestion.enabled
kafka_source_patcher = unittest.mock.patch.object(
KafkaSource, "__bases__", (StatefulProviderMock,)
)
ctx = PipelineContext(run_id="test", pipeline_name="test")
with pytest.raises(ConfigurationError):
with kafka_source_patcher:
# prevent delattr on __bases__ on context __exit__
kafka_source_patcher.is_local = True
KafkaSource.create(
{
"stateful_ingestion": {"enabled": "true"},
"connection": {"bootstrap": "localhost:9092"},
},
ctx,
)