148 lines
6.5 KiB
Python
Raw Normal View History

2015-12-16 16:58:32 -08:00
#
# Copyright 2015 LinkedIn Corp. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
import json
import datetime
2015-12-16 16:58:32 -08:00
import sys, os
import time
from org.slf4j import LoggerFactory
2015-12-16 16:58:32 -08:00
from wherehows.common.writers import FileWriter
from wherehows.common.schemas import DatasetSchemaRecord, DatasetFieldRecord
from wherehows.common import Constant
from HiveExtract import TableInfo
from org.apache.hadoop.hive.ql.tools import LineageInfo
from metadata.etl.dataset.hive import HiveViewDependency
2015-12-16 16:58:32 -08:00
class HiveTransform:
def __init__(self):
self.logger = LoggerFactory.getLogger('jython script : ' + self.__class__.__name__)
2015-12-16 16:58:32 -08:00
def transform(self, input, hive_metadata, hive_field_metadata):
"""
convert from json to csv
:param input: input json file
:param hive_metadata: output data file for hive table metadata
:param hive_field_metadata: output data file for hive field metadata
:return:
"""
f_json = open(input)
all_data = json.load(f_json)
f_json.close()
schema_file_writer = FileWriter(hive_metadata)
field_file_writer = FileWriter(hive_field_metadata)
lineageInfo = LineageInfo()
# one db info : 'type', 'database', 'tables'
# one table info : required : 'name' , 'type', 'serializationFormat' ,'createTime', 'DB_ID', 'TBL_ID', 'SD_ID'
# optional : 'schemaLiteral', 'schemaUrl', 'fieldDelimiter', 'fieldList'
for one_db_info in all_data:
i = 0
for table in one_db_info['tables']:
i += 1
schema_json = {}
prop_json = {} # set the prop json
for prop_name in TableInfo.optional_prop:
if prop_name in table and table[prop_name] is not None:
prop_json[prop_name] = table[prop_name]
if TableInfo.view_expended_text in prop_json:
text = prop_json[TableInfo.view_expended_text].replace('`', '')
array = HiveViewDependency.getViewDependency(text)
l = []
for a in array:
l.append(a)
prop_json['view_depends_on'] = l
# process either schema
flds = {}
field_detail_list = []
if TableInfo.schema_literal in table and table[TableInfo.schema_literal] is not None:
sort_id = 0
try:
schema_data = json.loads(table[TableInfo.schema_literal])
except ValueError:
self.logger.error("Schema json error for table : \n" + str(table))
2015-12-16 16:58:32 -08:00
schema_json = schema_data
# process each field
for field in schema_data['fields']:
field_name = field['name']
type = field['type'] # could be a list
default_value = field['default'] if 'default' in field else None
doc = field['doc'] if 'doc' in field else None
attributes_json = json.loads(field['attributes_json']) if 'attributes_json' in field else None
pk = delta = is_nullable = is_indexed = is_partitioned = inside_type = format = data_size = None
if attributes_json:
pk = attributes_json['pk'] if 'pk' in attributes_json else None
delta = attributes_json['delta'] if 'delta' in attributes_json else None
is_nullable = attributes_json['nullable'] if 'nullable' in attributes_json else None
inside_type = attributes_json['type'] if 'type' in attributes_json else None
format = attributes_json['format'] if 'format' in attributes_json else None
flds[field_name] = {'type': type}
# String urn, Integer sortId, Integer parentSortId, String parentPath, String fieldName,
#String dataType, String isNullable, String defaultValue, Integer dataSize, String namespace, String description
sort_id += 1
field_detail_list.append(
["hive:///%s/%s" % (one_db_info['database'], table['name']), str(sort_id), '0', None, field_name, '',
type, data_size, None, None, is_nullable, is_indexed, is_partitioned, default_value, None,
json.dumps(attributes_json)])
elif TableInfo.field_list in table:
schema_json = {'type': 'record', 'name': table['name'],
'fields': table[TableInfo.field_list]} # construct a schema for data came from COLUMN_V2
for field in table[TableInfo.field_list]:
field_name = field['ColumnName']
type = field['TypeName']
# ColumnName, IntegerIndex, TypeName, Comment
flds[field_name] = {'type': type}
pk = delta = is_nullable = is_indexed = is_partitioned = inside_type = format = data_size = default_value = None # TODO ingest
field_detail_list.append(
["hive:///%s/%s" % (one_db_info['database'], table['name']), field['IntegerIndex'], '0', None, field_name,
'', field['TypeName'], None, None, None, is_nullable, is_indexed, is_partitioned, default_value, None,
None])
dataset_scehma_record = DatasetSchemaRecord(table['name'], json.dumps(schema_json), json.dumps(prop_json),
json.dumps(flds),
"hive:///%s/%s" % (one_db_info['database'], table['name']), 'Hive',
'', (table[TableInfo.create_time] if table.has_key(
TableInfo.create_time) else None), (table["lastAlterTime"]) if table.has_key("lastAlterTime") else None)
schema_file_writer.append(dataset_scehma_record)
for fields in field_detail_list:
field_record = DatasetFieldRecord(fields)
field_file_writer.append(field_record)
schema_file_writer.flush()
field_file_writer.flush()
self.logger.info("%20s contains %6d tables" % (one_db_info['database'], i))
2015-12-16 16:58:32 -08:00
schema_file_writer.close()
field_file_writer.close()
def convert_timestamp(self, time_string):
return int(time.mktime(time.strptime(time_string, "%Y-%m-%d %H:%M:%S")))
if __name__ == "__main__":
args = sys.argv[1]
t = HiveTransform()
t.transform(args[Constant.HIVE_SCHEMA_JSON_FILE_KEY], args[Constant.HIVE_SCHEMA_CSV_FILE_KEY], args[Constant.HIVE_FIELD_METADATA_KEY])