datahub/metadata-ingestion/tests/unit/test_bigquery_source.py

627 lines
21 KiB
Python
Raw Normal View History

import json
import os
from datetime import datetime, timedelta, timezone
from types import SimpleNamespace
from typing import Any, Dict, Optional, cast
from unittest.mock import Mock, patch
import pytest
from google.cloud.bigquery.table import Row, TableListItem
from datahub.ingestion.api.common import PipelineContext
from datahub.ingestion.source.bigquery_v2.bigquery import BigqueryV2Source
from datahub.ingestion.source.bigquery_v2.bigquery_audit import (
BigqueryTableIdentifier,
BigQueryTableRef,
)
from datahub.ingestion.source.bigquery_v2.bigquery_config import BigQueryV2Config
from datahub.ingestion.source.bigquery_v2.bigquery_schema import (
BigQueryDataDictionary,
BigqueryProject,
BigqueryView,
)
from datahub.ingestion.source.bigquery_v2.lineage import LineageEdge
from datahub.metadata.com.linkedin.pegasus2avro.dataset import ViewProperties
from datahub.metadata.schema_classes import MetadataChangeProposalClass
def test_bigquery_uri():
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
}
)
assert config.get_sql_alchemy_url() == "bigquery://"
def test_bigquery_uri_on_behalf():
config = BigQueryV2Config.parse_obj(
{"project_id": "test-project", "project_on_behalf": "test-project-on-behalf"}
)
assert config.get_sql_alchemy_url() == "bigquery://test-project-on-behalf"
def test_bigquery_uri_with_credential():
expected_credential_json = {
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"client_email": "test@acryl.io",
"client_id": "test_client-id",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/test@acryl.io",
"private_key": "random_private_key",
"private_key_id": "test-private-key",
"project_id": "test-project",
"token_uri": "https://oauth2.googleapis.com/token",
"type": "service_account",
}
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
"credential": {
"project_id": "test-project",
"private_key_id": "test-private-key",
"private_key": "random_private_key",
"client_email": "test@acryl.io",
"client_id": "test_client-id",
},
}
)
try:
assert config.get_sql_alchemy_url() == "bigquery://"
assert config._credentials_path
with open(config._credentials_path) as jsonFile:
json_credential = json.load(jsonFile)
jsonFile.close()
credential = json.dumps(json_credential, sort_keys=True)
expected_credential = json.dumps(expected_credential_json, sort_keys=True)
assert expected_credential == credential
except AssertionError as e:
if config._credentials_path:
os.unlink(str(config._credentials_path))
raise e
@patch("google.cloud.bigquery.client.Client")
def test_get_projects_with_project_ids(client_mock):
config = BigQueryV2Config.parse_obj(
{
"project_ids": ["test-1", "test-2"],
}
)
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test1"))
assert source._get_projects(client_mock) == [
BigqueryProject("test-1", "test-1"),
BigqueryProject("test-2", "test-2"),
]
assert client_mock.list_projects.call_count == 0
config = BigQueryV2Config.parse_obj(
{"project_ids": ["test-1", "test-2"], "project_id": "test-3"}
)
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test2"))
assert source._get_projects(client_mock) == [
BigqueryProject("test-1", "test-1"),
BigqueryProject("test-2", "test-2"),
]
assert client_mock.list_projects.call_count == 0
@patch("google.cloud.bigquery.client.Client")
def test_get_projects_with_single_project_id(client_mock):
config = BigQueryV2Config.parse_obj({"project_id": "test-3"})
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test1"))
assert source._get_projects(client_mock) == [
BigqueryProject("test-3", "test-3"),
]
assert client_mock.list_projects.call_count == 0
@patch("google.cloud.bigquery.client.Client")
def test_get_projects(client_mock):
client_mock.list_projects.return_value = [
SimpleNamespace(
project_id="test-1",
friendly_name="one",
),
SimpleNamespace(
project_id="test-2",
friendly_name="two",
),
]
config = BigQueryV2Config.parse_obj({})
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test1"))
assert source._get_projects(client_mock) == [
BigqueryProject("test-1", "one"),
BigqueryProject("test-2", "two"),
]
assert client_mock.list_projects.call_count == 1
def test_simple_upstream_table_generation():
a: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="a"
)
)
b: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="b"
)
)
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
}
)
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test"))
lineage_metadata = {str(a): {LineageEdge(table=str(b), auditStamp=datetime.now())}}
upstreams = source.lineage_extractor.get_upstream_tables(a, lineage_metadata, [])
assert len(upstreams) == 1
assert list(upstreams)[0].table == str(b)
def test_upstream_table_generation_with_temporary_table_without_temp_upstream():
a: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="a"
)
)
b: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="_temp-dataset", table="b"
)
)
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
}
)
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test"))
lineage_metadata = {str(a): {LineageEdge(table=str(b), auditStamp=datetime.now())}}
upstreams = source.lineage_extractor.get_upstream_tables(a, lineage_metadata, [])
assert list(upstreams) == []
def test_upstream_table_generation_with_temporary_table_with_temp_upstream():
from datahub.ingestion.api.common import PipelineContext
a: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="a"
)
)
b: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="_temp-dataset", table="b"
)
)
c: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="c"
)
)
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
}
)
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test"))
lineage_metadata = {
str(a): {LineageEdge(table=str(b), auditStamp=datetime.now())},
str(b): {LineageEdge(table=str(c), auditStamp=datetime.now())},
}
upstreams = source.lineage_extractor.get_upstream_tables(a, lineage_metadata, [])
assert len(upstreams) == 1
assert list(upstreams)[0].table == str(c)
def test_upstream_table_generation_with_temporary_table_with_multiple_temp_upstream():
a: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="a"
)
)
b: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="_temp-dataset", table="b"
)
)
c: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="c"
)
)
d: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="_test-dataset", table="d"
)
)
e: BigQueryTableRef = BigQueryTableRef(
BigqueryTableIdentifier(
project_id="test-project", dataset="test-dataset", table="e"
)
)
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
}
)
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test"))
lineage_metadata = {
str(a): {LineageEdge(table=str(b), auditStamp=datetime.now())},
str(b): {
LineageEdge(table=str(c), auditStamp=datetime.now()),
LineageEdge(table=str(d), auditStamp=datetime.now()),
},
str(d): {LineageEdge(table=str(e), auditStamp=datetime.now())},
}
upstreams = source.lineage_extractor.get_upstream_tables(a, lineage_metadata, [])
sorted_list = list(upstreams)
sorted_list.sort()
assert sorted_list[0].table == str(c)
assert sorted_list[1].table == str(e)
@patch(
"datahub.ingestion.source.bigquery_v2.bigquery_schema.BigQueryDataDictionary.get_tables_for_dataset"
)
@patch("google.cloud.bigquery.client.Client")
def test_table_processing_logic(client_mock, data_dictionary_mock):
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
}
)
tableListItems = [
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "test-table",
}
}
),
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "test-sharded-table_20220102",
}
}
),
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "test-sharded-table_20210101",
}
}
),
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "test-sharded-table_20220101",
}
}
),
]
client_mock.list_tables.return_value = tableListItems
data_dictionary_mock.get_tables_for_dataset.return_value = None
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test"))
_ = list(
source.get_tables_for_dataset(
conn=client_mock, project_id="test-project", dataset_name="test-dataset"
)
)
assert data_dictionary_mock.call_count == 1
# args only available from python 3.8 and that's why call_args_list is sooo ugly
tables: Dict[str, TableListItem] = data_dictionary_mock.call_args_list[0][0][
3
] # alternatively
for table in tables.keys():
assert table in ["test-table", "test-sharded-table_20220102"]
@patch(
"datahub.ingestion.source.bigquery_v2.bigquery_schema.BigQueryDataDictionary.get_tables_for_dataset"
)
@patch("google.cloud.bigquery.client.Client")
def test_table_processing_logic_date_named_tables(client_mock, data_dictionary_mock):
# test that tables with date names are processed correctly
config = BigQueryV2Config.parse_obj(
{
"project_id": "test-project",
}
)
tableListItems = [
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "test-table",
}
}
),
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "20220102",
}
}
),
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "20210101",
}
}
),
TableListItem(
{
"tableReference": {
"projectId": "test-project",
"datasetId": "test-dataset",
"tableId": "20220103",
}
}
),
]
client_mock.list_tables.return_value = tableListItems
data_dictionary_mock.get_tables_for_dataset.return_value = None
source = BigqueryV2Source(config=config, ctx=PipelineContext(run_id="test"))
_ = list(
source.get_tables_for_dataset(
conn=client_mock, project_id="test-project", dataset_name="test-dataset"
)
)
assert data_dictionary_mock.call_count == 1
# args only available from python 3.8 and that's why call_args_list is sooo ugly
tables: Dict[str, TableListItem] = data_dictionary_mock.call_args_list[0][0][
3
] # alternatively
for table in tables.keys():
assert tables[table].table_id in ["test-table", "20220103"]
def create_row(d: Dict[str, Any]) -> Row:
values = []
field_to_index = {}
for i, (k, v) in enumerate(d.items()):
field_to_index[k] = i
values.append(v)
return Row(tuple(values), field_to_index)
@pytest.fixture
def bigquery_view_1() -> BigqueryView:
now = datetime.now(tz=timezone.utc)
return BigqueryView(
name="table1",
created=now - timedelta(days=10),
last_altered=now - timedelta(hours=1),
comment="comment1",
view_definition="CREATE VIEW 1",
materialized=False,
)
@pytest.fixture
def bigquery_view_2() -> BigqueryView:
now = datetime.now(tz=timezone.utc)
return BigqueryView(
name="table2",
created=now,
last_altered=now,
comment="comment2",
view_definition="CREATE VIEW 2",
materialized=True,
)
@patch(
"datahub.ingestion.source.bigquery_v2.bigquery_schema.BigQueryDataDictionary.get_query_result"
)
@patch("google.cloud.bigquery.client.Client")
def test_get_views_for_dataset(
client_mock: Mock,
query_mock: Mock,
bigquery_view_1: BigqueryView,
bigquery_view_2: BigqueryView,
) -> None:
assert bigquery_view_1.last_altered
row1 = create_row(
dict(
table_name=bigquery_view_1.name,
created=bigquery_view_1.created,
last_altered=bigquery_view_1.last_altered.timestamp() * 1000,
comment=bigquery_view_1.comment,
view_definition=bigquery_view_1.view_definition,
table_type="VIEW",
)
)
row2 = create_row( # Materialized view, no last_altered
dict(
table_name=bigquery_view_2.name,
created=bigquery_view_2.created,
comment=bigquery_view_2.comment,
view_definition=bigquery_view_2.view_definition,
table_type="MATERIALIZED VIEW",
)
)
query_mock.return_value = [row1, row2]
views = BigQueryDataDictionary.get_views_for_dataset(
conn=client_mock,
project_id="test-project",
dataset_name="test-dataset",
has_data_read=False,
)
assert list(views) == [bigquery_view_1, bigquery_view_2]
@patch.object(BigqueryV2Source, "gen_dataset_workunits", lambda *args, **kwargs: [])
def test_gen_view_dataset_workunits(bigquery_view_1, bigquery_view_2):
project_id = "test-project"
dataset_name = "test-dataset"
config = BigQueryV2Config.parse_obj(
{
"project_id": project_id,
}
)
source: BigqueryV2Source = BigqueryV2Source(
config=config, ctx=PipelineContext(run_id="test")
)
gen = source.gen_view_dataset_workunits(
bigquery_view_1, [], project_id, dataset_name
)
mcp = cast(MetadataChangeProposalClass, next(iter(gen)).metadata)
assert mcp.aspect == ViewProperties(
materialized=bigquery_view_1.materialized,
viewLanguage="SQL",
viewLogic=bigquery_view_1.view_definition,
)
gen = source.gen_view_dataset_workunits(
bigquery_view_2, [], project_id, dataset_name
)
mcp = cast(MetadataChangeProposalClass, next(iter(gen)).metadata)
assert mcp.aspect == ViewProperties(
materialized=bigquery_view_2.materialized,
viewLanguage="SQL",
viewLogic=bigquery_view_2.view_definition,
)
@pytest.mark.parametrize(
"table_name, expected_table_prefix, expected_shard",
[
# Cases with Fully qualified name as input
("project.dataset.table", "project.dataset.table", None),
("project.dataset.table_20231215", "project.dataset.table", "20231215"),
("project.dataset.table_2023", "project.dataset.table_2023", None),
# incorrectly handled special case where dataset itself is a sharded table if full name is specified
("project.dataset.20231215", "project.dataset.20231215", None),
# Cases with Just the table name as input
("table", "table", None),
("table20231215", "table20231215", None),
("table_20231215", "table", "20231215"),
("table_1624046611000_name", "table_1624046611000_name", None),
("table_1624046611000", "table_1624046611000", None),
# Special case where dataset itself is a sharded table
("20231215", None, "20231215"),
],
)
def test_get_table_and_shard_default(
table_name: str, expected_table_prefix: Optional[str], expected_shard: Optional[str]
) -> None:
with patch(
"datahub.ingestion.source.bigquery_v2.bigquery_audit.BigqueryTableIdentifier._BIGQUERY_DEFAULT_SHARDED_TABLE_REGEX",
"((.+)[_$])?(\\d{8})$",
):
assert BigqueryTableIdentifier.get_table_and_shard(table_name) == (
expected_table_prefix,
expected_shard,
)
@pytest.mark.parametrize(
"table_name, expected_table_prefix, expected_shard",
[
# Cases with Fully qualified name as input
("project.dataset.table", "project.dataset.table", None),
("project.dataset.table_20231215", "project.dataset.table", "20231215"),
("project.dataset.table_2023", "project.dataset.table", "2023"),
# incorrectly handled special case where dataset itself is a sharded table if full name is specified
("project.dataset.20231215", "project.dataset.20231215", None),
("project.dataset.2023", "project.dataset.2023", None),
# Cases with Just the table name as input
("table", "table", None),
("table20231215", "table20231215", None),
("table_20231215", "table", "20231215"),
("table_2023", "table", "2023"),
("table_1624046611000_name", "table_1624046611000_name", None),
("table_1624046611000", "table_1624046611000", None),
("table_1624046611", "table", "1624046611"),
# Special case where dataset itself is a sharded table
("20231215", None, "20231215"),
("2023", None, "2023"),
],
)
def test_get_table_and_shard_custom_shard_pattern(
table_name: str, expected_table_prefix: Optional[str], expected_shard: Optional[str]
) -> None:
with patch(
"datahub.ingestion.source.bigquery_v2.bigquery_audit.BigqueryTableIdentifier._BIGQUERY_DEFAULT_SHARDED_TABLE_REGEX",
"((.+)[_$])?(\\d{4,10})$",
):
assert BigqueryTableIdentifier.get_table_and_shard(table_name) == (
expected_table_prefix,
expected_shard,
)
@pytest.mark.parametrize(
"full_table_name, datahub_full_table_name",
[
("project.dataset.table", "project.dataset.table"),
("project.dataset.table_20231215", "project.dataset.table"),
("project.dataset.table@1624046611000", "project.dataset.table"),
(
"project.dataset.table_1624046611000_name",
"project.dataset.table_1624046611000_name",
),
("project.dataset.table_1624046611000", "project.dataset.table_1624046611000"),
("project.dataset.table20231215", "project.dataset.table20231215"),
("project.dataset.table_*", "project.dataset.table"),
("project.dataset.table_2023*", "project.dataset.table"),
("project.dataset.table_202301*", "project.dataset.table"),
# Special case where dataset itself is a sharded table
("project.dataset.20230112", "project.dataset.dataset"),
],
)
def test_get_table_name(full_table_name: str, datahub_full_table_name: str) -> None:
with patch(
"datahub.ingestion.source.bigquery_v2.bigquery_audit.BigqueryTableIdentifier._BQ_SHARDED_TABLE_SUFFIX",
"",
):
assert (
BigqueryTableIdentifier.from_string_name(full_table_name).get_table_name()
== datahub_full_table_name
)