2025-08-21 14:51:11 -07:00
|
|
|
from datahub.metadata.urns import MlModelUrn
|
2025-06-12 14:00:26 +09:00
|
|
|
from datahub.sdk import DataHubClient
|
2023-05-17 10:21:39 +09:00
|
|
|
|
2025-06-12 14:00:26 +09:00
|
|
|
client = DataHubClient.from_env()
|
2023-05-17 10:21:39 +09:00
|
|
|
|
2025-08-21 14:51:11 -07:00
|
|
|
# Or get this from the UI (share -> copy urn) and use MlModelUrn.from_string(...)
|
|
|
|
mlmodel_urn = MlModelUrn(platform="mlflow", name="my-recommendations-model")
|
2023-05-17 10:21:39 +09:00
|
|
|
|
2025-08-21 14:51:11 -07:00
|
|
|
mlmodel_entity = client.entities.get(mlmodel_urn)
|
|
|
|
print("Model Name: ", mlmodel_entity.name)
|
|
|
|
print("Model Description: ", mlmodel_entity.description)
|
|
|
|
print("Model Group: ", mlmodel_entity.model_group)
|
|
|
|
print("Model Hyper Parameters: ", mlmodel_entity.hyper_params)
|