s3://my-bucket/{dept}/tests/{table}/{partition_key[0]}={partition[0]}/{partition_key[1]}={partition[1]}/*.avro # specify partition key and value format
s3://my-bucket/{dept}/tests/{table}/{partition[0]}/{partition[1]}/{partition[2]}/*.avro # specify partition value only format
s3://my-bucket/{dept}/tests/{table}/{partition[0]}/{partition[1]}/{partition[2]}/*.* # for all extensions
s3://my-bucket/*/{table}/{partition[0]}/{partition[1]}/{partition[2]}/*.* # table is present at 2 levels down in bucket
s3://my-bucket/*/*/{table}/{partition[0]}/{partition[1]}/{partition[2]}/*.* # table is present at 3 levels down in bucket
Running profiling against many tables or over many rows can run up significant costs.
While we've done our best to limit the expensiveness of the queries the profiler runs, you
should be prudent about the set of tables profiling is enabled on or the frequency
of the profiling runs.
:::
:::caution
If you are ingesting datasets from AWS S3, we recommend running the ingestion on a server in the same region to avoid high egress costs.
:::
## Compatibility
Profiles are computed with PyDeequ, which relies on PySpark. Therefore, for computing profiles, we currently require Spark 3.0.3 with Hadoop 3.2 to be installed and the `SPARK_HOME` and `SPARK_VERSION` environment variables to be set. The Spark+Hadoop binary can be downloaded [here](https://www.apache.org/dyn/closer.lua/spark/spark-3.0.3/spark-3.0.3-bin-hadoop3.2.tgz).
For an example guide on setting up PyDeequ on AWS, see [this guide](https://aws.amazon.com/blogs/big-data/testing-data-quality-at-scale-with-pydeequ/).