621 lines
15 KiB
Markdown
Raw Normal View History

import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
# ML System
## Why Would You Integrate ML System with DataHub?
Machine learning systems have become a crucial feature in modern data stacks.
However, the relationships between the different components of a machine learning system, such as features, models, and feature tables, can be complex.
DataHub makes these relationships discoverable and facilitate utilization by other members of the organization.
For technical details on ML entities, please refer to the following docs:
- [MlFeature](/docs/generated/metamodel/entities/mlFeature.md)
- [MlPrimaryKey](/docs/generated/metamodel/entities/mlPrimaryKey.md)
- [MlFeatureTable](/docs/generated/metamodel/entities/mlFeatureTable.md)
- [MlModel](/docs/generated/metamodel/entities/mlModel.md)
- [MlModelGroup](/docs/generated/metamodel/entities/mlModelGroup.md)
### Goal Of This Guide
This guide will show you how to
- Create ML entities: MlFeature, MlFeatureTable, MlModel, MlModelGroup, MlPrimaryKey
- Read ML entities: MlFeature, MlFeatureTable, MlModel, MlModelGroup, MlPrimaryKey
- Attach MlModel to MlFeature
- Attach MlFeatures to MlFeatureTable
- Attached MlFeatures to upstream Datasets that power them
## Prerequisites
For this tutorial, you need to deploy DataHub Quickstart and ingest sample data.
For detailed steps, please refer to [Datahub Quickstart Guide](/docs/quickstart.md).
## Create ML Entities
### Create MlFeature
An ML Feature represents an instance of a feature that can be used across different machine learning models. Features are organized into Feature Tables to be consumed by machine learning models. For example, if we were modeling features for a Users Feature Table, the Features would be `age`, `sign_up_date`, `active_in_past_30_days` and so forth.Using Features in DataHub allows users to see the sources a feature was generated from and how a feature is used to train models.
<Tabs>
<TabItem value="python" label="Python" default>
```python
{{ inline /metadata-ingestion/examples/library/create_mlfeature.py show_path_as_comment }}
```
Note that when creating a feature, you create upstream lineage to the data warehouse using `sources`.
</TabItem>
</Tabs>
### Create MlPrimaryKey
An ML Primary Key represents a specific element of a Feature Table that indicates what group the other features belong to. For example, if a Feature Table contained features for Users, the ML Primary Key would likely be `user_id` or some similar unique identifier for a user. Using ML Primary Keys in DataHub allow users to indicate how ML Feature Tables are structured.
<Tabs>
<TabItem value="python" label="Python" default>
```python
{{ inline /metadata-ingestion/examples/library/create_mlprimarykey.py show_path_as_comment }}
```
Note that when creating a primary key, you create upstream lineage to the data warehouse using `sources`.
</TabItem>
</Tabs>
### Create MlFeatureTable
A feature table represents a group of similar Features that can all be used together to train a model. For example, if there was a Users Feature Table, it would contain documentation around how to use the Users collection of Features and references to each Feature and ML Primary Key contained within it.
<Tabs>
<TabItem value="python" label="Python" default>
```python
{{ inline /metadata-ingestion/examples/library/create_mlfeature_table.py show_path_as_comment }}
```
Note that when creating a feature table, you connect the table to its features and primary key using `mlFeatures` and `mlPrimaryKeys`.
</TabItem>
</Tabs>
### Create MlModel
An ML Model in Acryl represents an individual version of a trained Machine Learning Model. Another way to think about the ML Model entity is as an istance of a training run. An ML Model entity tracks the exact ML Features used in that instance of training, along with the training results. This entity does not represents all versions of a ML Model. For example, if we train a model for homepage customization on a certain day, that would be a ML Model in DataHub. If you re-train the model the next day off of new data or with different parameters, that would produce a second ML Model entity.
<Tabs>
<TabItem value="python" label="Python" default>
```python
{{ inline /metadata-ingestion/examples/library/create_mlmodel.py show_path_as_comment }}
```
Note that when creating a model, you link it to a list of features using `mlFeatures`. This indicates how the individual instance of the model was trained.
Additionally, you can access the relationship to model groups with `groups`. An ML Model is connected to the warehouse tables it depends on via its dependency on the ML Features it reads from.
</TabItem>
</Tabs>
### Create MlModelGroup
An ML Model Group represents the grouping of all training runs of a single Machine Learning model category. It will store documentation about the group of ML Models, along with references to each individual ML Model instance.
<Tabs>
<TabItem value="python" label="Python" default>
```python
{{ inline /metadata-ingestion/examples/library/create_mlmodel_group.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Expected Outcome of creating entities
You can search the entities in DataHub UI.
<p align="center">
<img width="70%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/apis/tutorials/feature-table-created.png"/>
</p>
<p align="center">
<img width="70%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/apis/tutorials/model-group-created.png"/>
</p>
## Read ML Entities
### Read MLFeature
<Tabs>
<TabItem value="graphql" label="GraphQL" default>
```json
query {
mlFeature(urn: "urn:li:mlFeature:(test_feature_table_all_feature_dtypes,test_BOOL_LIST_feature)"){
name
featureNamespace
description
properties {
description
dataType
version {
versionTag
}
}
}
}
```
Expected response:
```json
{
"data": {
"mlFeature": {
"name": "test_BOOL_LIST_feature",
"featureNamespace": "test_feature_table_all_feature_dtypes",
"description": null,
"properties": {
"description": null,
"dataType": "SEQUENCE",
"version": null
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="curl" label="Curl" default>
```json
curl --location --request POST 'http://localhost:8080/api/graphql' \
--header 'Authorization: Bearer <my-access-token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"query": "{ mlFeature(urn: \"urn:li:mlFeature:(test_feature_table_all_feature_dtypes,test_BOOL_LIST_feature)\") { name featureNamespace description properties { description dataType version { versionTag } } } }"
}'
```
Expected response:
```json
{
"data": {
"mlFeature": {
"name": "test_BOOL_LIST_feature",
"featureNamespace": "test_feature_table_all_feature_dtypes",
"description": null,
"properties": {
"description": null,
"dataType": "SEQUENCE",
"version": null
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/read_mlfeature.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Read MlPrimaryKey
<Tabs>
<TabItem value="graphql" label="GraphQL" default>
```json
query {
mlPrimaryKey(urn: "urn:li:mlPrimaryKey:(user_features,user_id)"){
name
featureNamespace
description
dataType
properties {
description
dataType
version {
versionTag
}
}
}
}
```
Expected response:
```json
{
"data": {
"mlPrimaryKey": {
"name": "user_id",
"featureNamespace": "user_features",
"description": "User's internal ID",
"dataType": "ORDINAL",
"properties": {
"description": "User's internal ID",
"dataType": "ORDINAL",
"version": null
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="curl" label="Curl" default>
```json
curl --location --request POST 'http://localhost:8080/api/graphql' \
--header 'Authorization: Bearer <my-access-token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"query": "query { mlPrimaryKey(urn: \"urn:li:mlPrimaryKey:(user_features,user_id)\"){ name featureNamespace description dataType properties { description dataType version { versionTag } } }}"
}'
```
Expected response:
```json
{
"data": {
"mlPrimaryKey": {
"name": "user_id",
"featureNamespace": "user_features",
"description": "User's internal ID",
"dataType": "ORDINAL",
"properties": {
"description": "User's internal ID",
"dataType": "ORDINAL",
"version": null
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/read_mlprimarykey.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Read MLFeatureTable
<Tabs>
<TabItem value="graphql" label="GraphQL" default>
```json
query {
mlFeatureTable(urn: "urn:li:mlFeatureTable:(urn:li:dataPlatform:feast,test_feature_table_all_feature_dtypes)"){
name
description
platform {
name
}
properties {
description
mlFeatures {
name
}
}
}
}
```
Expected Response:
```json
{
"data": {
"mlFeatureTable": {
"name": "test_feature_table_all_feature_dtypes",
"description": null,
"platform": {
"name": "feast"
},
"properties": {
"description": null,
"mlFeatures": [
{
"name": "test_BOOL_LIST_feature"
},
...{
"name": "test_STRING_feature"
}
]
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="curl" label="Curl">
```json
curl --location --request POST 'http://localhost:8080/api/graphql' \
--header 'Authorization: Bearer <my-access-token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"query": "{ mlFeatureTable(urn: \"urn:li:mlFeatureTable:(urn:li:dataPlatform:feast,test_feature_table_all_feature_dtypes)\") { name description platform { name } properties { description mlFeatures { name } } } }"
}'
```
Expected Response:
```json
{
"data": {
"mlFeatureTable": {
"name": "test_feature_table_all_feature_dtypes",
"description": null,
"platform": {
"name": "feast"
},
"properties": {
"description": null,
"mlFeatures": [
{
"name": "test_BOOL_LIST_feature"
},
...{
"name": "test_STRING_feature"
}
]
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/read_mlfeature_table.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Read MLModel
<Tabs>
<TabItem value="graphql" label="GraphQL" default>
```json
query {
mlModel(urn: "urn:li:mlModel:(urn:li:dataPlatform:science,scienceModel,PROD)"){
name
description
properties {
description
version
type
mlFeatures
groups {
urn
name
}
}
}
}
```
Expected Response:
```json
{
"data": {
"mlModel": {
"name": "scienceModel",
"description": "A sample model for predicting some outcome.",
"properties": {
"description": "A sample model for predicting some outcome.",
"version": null,
"type": "Naive Bayes classifier",
"mlFeatures": null,
"groups": []
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="curl" label="Curl" default>
```json
curl --location --request POST 'http://localhost:8080/api/graphql' \
--header 'Authorization: Bearer <my-access-token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"query": "{ mlModel(urn: \"urn:li:mlModel:(urn:li:dataPlatform:science,scienceModel,PROD)\") { name description properties { description version type mlFeatures groups { urn name } } } }"
}'
```
Expected Response:
```json
{
"data": {
"mlModel": {
"name": "scienceModel",
"description": "A sample model for predicting some outcome.",
"properties": {
"description": "A sample model for predicting some outcome.",
"version": null,
"type": "Naive Bayes classifier",
"mlFeatures": null,
"groups": []
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/read_mlmodel.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Read MLModelGroup
<Tabs>
<TabItem value="graphql" label="GraphQL" default>
```json
query {
mlModelGroup(urn: "urn:li:mlModelGroup:(urn:li:dataPlatform:science,my-model-group,PROD)"){
name
description
platform {
name
}
properties {
description
}
}
}
```
Expected Response: (Note that this entity does not exist in the sample ingestion and you might want to create this entity first.)
```json
{
"data": {
"mlModelGroup": {
"name": "my-model-group",
"description": "my model group",
"platform": {
"name": "science"
},
"properties": {
"description": "my model group"
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="curl" label="Curl">
```json
curl --location --request POST 'http://localhost:8080/api/graphql' \
--header 'Authorization: Bearer <my-access-token>' \
--header 'Content-Type: application/json' \
--data-raw '{
"query": "{ mlModelGroup(urn: \"urn:li:mlModelGroup:(urn:li:dataPlatform:science,my-model-group,PROD)\") { name description platform { name } properties { description } } }"
}'
```
Expected Response: (Note that this entity does not exist in the sample ingestion and you might want to create this entity first.)
```json
{
"data": {
"mlModelGroup": {
"name": "my-model-group",
"description": "my model group",
"platform": {
"name": "science"
},
"properties": {
"description": "my model group"
}
}
},
"extensions": {}
}
```
</TabItem>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/read_mlmodel_group.py show_path_as_comment }}
```
</TabItem>
</Tabs>
## Add ML Entities
### Add MlFeature to MlFeatureTable
<Tabs>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/add_mlfeature_to_mlfeature_table.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Add MlFeature to MLModel
<Tabs>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/add_mlfeature_to_mlmodel.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Add MLGroup To MLModel
<Tabs>
<TabItem value="python" label="Python">
```python
{{ inline /metadata-ingestion/examples/library/add_mlgroup_to_mlmodel.py show_path_as_comment }}
```
</TabItem>
</Tabs>
### Expected Outcome of Adding ML Entities
You can access to `Features` or `Group` Tab of each entity to view the added entities.
<p align="center">
<img width="70%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/apis/tutorials/feature-added-to-model.png"/>
</p>
<p align="center">
<img width="70%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/apis/tutorials/model-group-added-to-model.png"/>
</p>