feat(ingest/snowflake): optionally emit all upstreams irrespective of recipe pattern (#7842)

This commit is contained in:
Mayuri Nehate 2023-04-24 23:31:15 +05:30 committed by GitHub
parent a5fa933fb0
commit 3212e74969
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 333 additions and 53 deletions

View File

@ -84,6 +84,11 @@ class SnowflakeV2Config(
description="Whether to use the legacy lineage computation method. If set to False, ingestion uses new optimised lineage extraction method that requires less ingestion process memory.",
)
validate_upstreams_against_patterns: bool = Field(
default=True,
description="Whether to validate upstream snowflake tables against allow-deny patterns",
)
@validator("include_column_lineage")
def validate_include_column_lineage(cls, v, values):
if not values.get("include_table_lineage") and v:

View File

@ -228,36 +228,32 @@ class SnowflakeLineageExtractor(
def get_table_upstream_workunits(self, discovered_tables):
if self.config.include_table_lineage:
for dataset_name in discovered_tables:
if self._is_dataset_pattern_allowed(
dataset_name, SnowflakeObjectDomain.TABLE
):
dataset_urn = builder.make_dataset_urn_with_platform_instance(
self.platform,
dataset_name,
self.config.platform_instance,
self.config.env,
)
upstream_lineage = self._get_upstream_lineage_info(dataset_name)
if upstream_lineage is not None:
yield MetadataChangeProposalWrapper(
entityUrn=dataset_urn, aspect=upstream_lineage
).as_workunit()
dataset_urn = builder.make_dataset_urn_with_platform_instance(
self.platform,
dataset_name,
self.config.platform_instance,
self.config.env,
)
upstream_lineage = self._get_upstream_lineage_info(dataset_name)
if upstream_lineage is not None:
yield MetadataChangeProposalWrapper(
entityUrn=dataset_urn, aspect=upstream_lineage
).as_workunit()
def get_view_upstream_workunits(self, discovered_views):
if self.config.include_view_lineage:
for view_name in discovered_views:
if self._is_dataset_pattern_allowed(view_name, "view"):
dataset_urn = builder.make_dataset_urn_with_platform_instance(
self.platform,
view_name,
self.config.platform_instance,
self.config.env,
)
upstream_lineage = self._get_upstream_lineage_info(view_name)
if upstream_lineage is not None:
yield MetadataChangeProposalWrapper(
entityUrn=dataset_urn, aspect=upstream_lineage
).as_workunit()
dataset_urn = builder.make_dataset_urn_with_platform_instance(
self.platform,
view_name,
self.config.platform_instance,
self.config.env,
)
upstream_lineage = self._get_upstream_lineage_info(view_name)
if upstream_lineage is not None:
yield MetadataChangeProposalWrapper(
entityUrn=dataset_urn, aspect=upstream_lineage
).as_workunit()
def _get_upstream_lineage_info(
self, dataset_name: str
@ -446,7 +442,7 @@ class SnowflakeLineageExtractor(
key, SnowflakeObjectDomain.TABLE
) or not (
self._is_dataset_pattern_allowed(
upstream_table_name, SnowflakeObjectDomain.TABLE
upstream_table_name, SnowflakeObjectDomain.TABLE, is_upstream=True
)
):
return
@ -500,7 +496,7 @@ class SnowflakeLineageExtractor(
dataset_name=view_name,
dataset_type=db_row["REFERENCING_OBJECT_DOMAIN"],
) or not self._is_dataset_pattern_allowed(
view_upstream, db_row["REFERENCED_OBJECT_DOMAIN"]
view_upstream, db_row["REFERENCED_OBJECT_DOMAIN"], is_upstream=True
):
return
# key is the downstream view name
@ -554,7 +550,7 @@ class SnowflakeLineageExtractor(
db_row["DOWNSTREAM_TABLE_NAME"]
)
if not self._is_dataset_pattern_allowed(
view_name, db_row["VIEW_DOMAIN"]
view_name, db_row["VIEW_DOMAIN"], is_upstream=True
) or not self._is_dataset_pattern_allowed(
downstream_table, db_row["DOWNSTREAM_TABLE_DOMAIN"]
):
@ -655,7 +651,7 @@ class SnowflakeLineageExtractor(
upstream_col.objectName
and upstream_col.columnName
and self._is_dataset_pattern_allowed(
upstream_col.objectName, upstream_col.objectDomain
upstream_col.objectName, upstream_col.objectDomain, is_upstream=True
)
):
upstream_dataset_name = self.get_dataset_identifier_from_qualified_name(

View File

@ -374,7 +374,7 @@ class SnowflakeLineageExtractor(
upstream_table["upstream_object_name"]
)
if upstream_name and self._is_dataset_pattern_allowed(
upstream_name, upstream_table["upstream_object_domain"]
upstream_name, upstream_table["upstream_object_domain"], is_upstream=True
):
upstreams.append(
UpstreamClass(
@ -486,7 +486,9 @@ class SnowflakeLineageExtractor(
upstream_col.objectName
and upstream_col.columnName
and self._is_dataset_pattern_allowed(
upstream_col.objectName, upstream_col.objectDomain
upstream_col.objectName,
upstream_col.objectDomain,
is_upstream=True,
)
):
upstream_dataset_name = self.get_dataset_identifier_from_qualified_name(

View File

@ -103,7 +103,10 @@ class SnowflakeCommonMixin:
self: SnowflakeCommonProtocol,
dataset_name: Optional[str],
dataset_type: Optional[str],
is_upstream: bool = False,
) -> bool:
if is_upstream and not self.config.validate_upstreams_against_patterns:
return True
if not dataset_type or not dataset_name:
return True
dataset_params = dataset_name.split(".")

View File

@ -285,6 +285,30 @@ def default_query_results(query): # noqa: C901
),
}
for op_idx in range(1, NUM_OPS + 1)
] + [
{
"DOWNSTREAM_TABLE_NAME": "TEST_DB.TEST_SCHEMA.TABLE_1",
"UPSTREAM_TABLE_NAME": "OTHER_DB.OTHER_SCHEMA.TABLE_1",
"UPSTREAM_TABLE_COLUMNS": json.dumps(
[{"columnId": 0, "columnName": "COL_1"}]
),
"DOWNSTREAM_TABLE_COLUMNS": json.dumps(
[
{
"columnId": 0,
"columnName": "COL_1",
"directSources": [
{
"columnName": "COL_1",
"objectDomain": "Table",
"objectId": 0,
"objectName": "OTHER_DB.OTHER_SCHEMA.TABLE_1",
}
],
}
]
),
}
]
elif query in (
snowflake_query.SnowflakeQuery.table_to_table_lineage_history_v2(
@ -307,7 +331,11 @@ def default_query_results(query): # noqa: C901
{
"upstream_object_name": "TEST_DB.TEST_SCHEMA.VIEW_1",
"upstream_object_domain": "VIEW",
}
},
{
"upstream_object_name": "OTHER_DB.OTHER_SCHEMA.TABLE_1",
"upstream_object_domain": "TABLE",
},
]
if op_idx == 1
else []
@ -329,6 +357,24 @@ def default_query_results(query): # noqa: C901
}
for col_idx in range(1, NUM_COLS + 1)
]
+ ( # This additional upstream is only for TABLE_1
[
{
"column_name": "COL_1",
"upstreams": [
[
{
"object_name": "OTHER_DB.OTHER_SCHEMA.TABLE_1",
"object_domain": "Table",
"column_name": "COL_1",
}
]
],
}
]
if op_idx == 1
else []
)
),
}
for op_idx in range(1, NUM_OPS + 1)
@ -347,8 +393,18 @@ def default_query_results(query): # noqa: C901
{
"upstream_object_name": "TEST_DB.TEST_SCHEMA.TABLE_2",
"upstream_object_domain": "TABLE",
}
},
]
+ ( # This additional upstream is only for TABLE_1
[
{
"upstream_object_name": "OTHER_DB.OTHER_SCHEMA.TABLE_1",
"upstream_object_domain": "TABLE",
},
]
if op_idx == 1
else []
)
),
}
for op_idx in range(1, NUM_OPS + 1)

View File

@ -3589,7 +3589,7 @@
},
{
"entityType": "dataset",
"entityUrn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.view_2,PROD)",
"entityUrn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.table_1,PROD)",
"changeType": "UPSERT",
"aspectName": "upstreamLineage",
"aspect": {
@ -3600,25 +3600,9 @@
"time": 0,
"actor": "urn:li:corpuser:unknown"
},
"dataset": "urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.table_2,PROD)",
"dataset": "urn:li:dataset:(urn:li:dataPlatform:snowflake,other_db.other_schema.table_1,PROD)",
"type": "TRANSFORMED"
}
]
}
},
"systemMetadata": {
"lastObserved": 1654621200000,
"runId": "snowflake-2022_06_07-17_00_00"
}
},
{
"entityType": "dataset",
"entityUrn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.table_1,PROD)",
"changeType": "UPSERT",
"aspectName": "upstreamLineage",
"aspect": {
"json": {
"upstreams": [
},
{
"auditStamp": {
"time": 0,
@ -3637,6 +3621,17 @@
}
],
"fineGrainedLineages": [
{
"upstreamType": "FIELD_SET",
"upstreams": [
"urn:li:schemaField:(urn:li:dataset:(urn:li:dataPlatform:snowflake,other_db.other_schema.table_1,PROD),col_1)"
],
"downstreamType": "FIELD",
"downstreams": [
"urn:li:schemaField:(urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.table_1,PROD),col_1)"
],
"confidenceScore": 1.0
},
{
"upstreamType": "FIELD_SET",
"upstreams": [
@ -4979,6 +4974,30 @@
"runId": "snowflake-2022_06_07-17_00_00"
}
},
{
"entityType": "dataset",
"entityUrn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.view_2,PROD)",
"changeType": "UPSERT",
"aspectName": "upstreamLineage",
"aspect": {
"json": {
"upstreams": [
{
"auditStamp": {
"time": 0,
"actor": "urn:li:corpuser:unknown"
},
"dataset": "urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.table_2,PROD)",
"type": "TRANSFORMED"
}
]
}
},
"systemMetadata": {
"lastObserved": 1654621200000,
"runId": "snowflake-2022_06_07-17_00_00"
}
},
{
"entityType": "dataset",
"entityUrn": "urn:li:dataset:(urn:li:dataPlatform:snowflake,test_db.test_schema.table_1,PROD)",

View File

@ -92,6 +92,7 @@ def test_snowflake_basic(pytestconfig, tmp_path, mock_time, mock_datahub_graph):
include_view_lineage=True,
include_usage_stats=False,
use_legacy_lineage_method=False,
validate_upstreams_against_patterns=False,
include_operational_stats=True,
start_time=datetime(2022, 6, 6, 7, 17, 0, 0).replace(
tzinfo=timezone.utc

View File

@ -0,0 +1,198 @@
import random
import string
from datetime import datetime, timezone
from unittest import mock
import pandas as pd
import pytest
from freezegun import freeze_time
from datahub.configuration.common import AllowDenyPattern, DynamicTypedConfig
from datahub.ingestion.glossary.classifier import (
ClassificationConfig,
DynamicTypedClassifierConfig,
)
from datahub.ingestion.glossary.datahub_classifier import (
DataHubClassifierConfig,
InfoTypeConfig,
PredictionFactorsAndWeights,
)
from datahub.ingestion.run.pipeline import Pipeline
from datahub.ingestion.run.pipeline_config import PipelineConfig, SourceConfig
from datahub.ingestion.source.ge_profiling_config import GEProfilingConfig
from datahub.ingestion.source.snowflake.snowflake_config import (
SnowflakeV2Config,
TagOption,
)
from tests.integration.snowflake.common import FROZEN_TIME, default_query_results
from tests.test_helpers import mce_helpers
def random_email():
return (
"".join(
[
random.choice(string.ascii_lowercase)
for i in range(random.randint(10, 15))
]
)
+ "@xyz.com"
)
@freeze_time(FROZEN_TIME)
@pytest.mark.integration
def test_snowflake_basic(pytestconfig, tmp_path, mock_time, mock_datahub_graph):
test_resources_dir = pytestconfig.rootpath / "tests/integration/snowflake"
# Run the metadata ingestion pipeline.
output_file = tmp_path / "snowflake_test_events.json"
golden_file = test_resources_dir / "snowflake_golden.json"
with mock.patch("snowflake.connector.connect") as mock_connect, mock.patch(
"datahub.ingestion.source.snowflake.snowflake_v2.SnowflakeV2Source.get_sample_values_for_table"
) as mock_sample_values:
sf_connection = mock.MagicMock()
sf_cursor = mock.MagicMock()
mock_connect.return_value = sf_connection
sf_connection.cursor.return_value = sf_cursor
sf_cursor.execute.side_effect = default_query_results
mock_sample_values.return_value = pd.DataFrame(
data={
"col_1": [random.randint(0, 100) for i in range(1, 200)],
"col_2": [random_email() for i in range(1, 200)],
}
)
datahub_classifier_config = DataHubClassifierConfig()
datahub_classifier_config.confidence_level_threshold = 0.58
datahub_classifier_config.info_types_config = {
"Age": InfoTypeConfig(
Prediction_Factors_and_Weights=PredictionFactorsAndWeights(
Name=0, Values=1, Description=0, Datatype=0
)
),
}
pipeline = Pipeline(
config=PipelineConfig(
source=SourceConfig(
type="snowflake",
config=SnowflakeV2Config(
account_id="ABC12345.ap-south-1.aws",
username="TST_USR",
password="TST_PWD",
match_fully_qualified_names=True,
schema_pattern=AllowDenyPattern(allow=["test_db.test_schema"]),
include_technical_schema=True,
include_table_lineage=True,
include_view_lineage=True,
include_usage_stats=False,
use_legacy_lineage_method=True,
validate_upstreams_against_patterns=False,
include_operational_stats=True,
start_time=datetime(2022, 6, 6, 7, 17, 0, 0).replace(
tzinfo=timezone.utc
),
end_time=datetime(2022, 6, 7, 7, 17, 0, 0).replace(
tzinfo=timezone.utc
),
classification=ClassificationConfig(
enabled=True,
column_pattern=AllowDenyPattern(
allow=[".*col_1$", ".*col_2$"]
),
classifiers=[
DynamicTypedClassifierConfig(
type="datahub", config=datahub_classifier_config
)
],
),
profiling=GEProfilingConfig(
enabled=True,
profile_if_updated_since_days=None,
profile_table_row_limit=None,
profile_table_size_limit=None,
profile_table_level_only=True,
),
extract_tags=TagOption.without_lineage,
),
),
sink=DynamicTypedConfig(
type="file", config={"filename": str(output_file)}
),
)
)
pipeline.run()
pipeline.pretty_print_summary()
pipeline.raise_from_status()
# Verify the output.
mce_helpers.check_golden_file(
pytestconfig,
output_path=output_file,
golden_path=golden_file,
ignore_paths=[],
)
@freeze_time(FROZEN_TIME)
@pytest.mark.integration
def test_snowflake_private_link(pytestconfig, tmp_path, mock_time, mock_datahub_graph):
test_resources_dir = pytestconfig.rootpath / "tests/integration/snowflake"
# Run the metadata ingestion pipeline.
output_file = tmp_path / "snowflake_privatelink_test_events.json"
golden_file = test_resources_dir / "snowflake_privatelink_golden.json"
with mock.patch("snowflake.connector.connect") as mock_connect:
sf_connection = mock.MagicMock()
sf_cursor = mock.MagicMock()
mock_connect.return_value = sf_connection
sf_connection.cursor.return_value = sf_cursor
sf_cursor.execute.side_effect = default_query_results
pipeline = Pipeline(
config=PipelineConfig(
source=SourceConfig(
type="snowflake",
config=SnowflakeV2Config(
account_id="ABC12345.ap-south-1.privatelink",
username="TST_USR",
password="TST_PWD",
schema_pattern=AllowDenyPattern(allow=["test_schema"]),
include_technical_schema=True,
include_table_lineage=True,
include_column_lineage=False,
include_views=False,
include_view_lineage=False,
use_legacy_lineage_method=True,
include_usage_stats=False,
include_operational_stats=False,
start_time=datetime(2022, 6, 6, 7, 17, 0, 0).replace(
tzinfo=timezone.utc
),
end_time=datetime(2022, 6, 7, 7, 17, 0, 0).replace(
tzinfo=timezone.utc
),
),
),
sink=DynamicTypedConfig(
type="file", config={"filename": str(output_file)}
),
)
)
pipeline.run()
pipeline.pretty_print_summary()
pipeline.raise_from_status()
# Verify the output.
mce_helpers.check_golden_file(
pytestconfig,
output_path=output_file,
golden_path=golden_file,
ignore_paths=[],
)