import datahub.emitter.mce_builder as builder import datahub.metadata.schema_classes as models from datahub.emitter.mcp import MetadataChangeProposalWrapper from datahub.emitter.rest_emitter import DatahubRestEmitter # Create an emitter to DataHub over REST emitter = DatahubRestEmitter(gms_server="http://localhost:8080", extra_headers={}) dataset_urn = builder.make_dataset_urn( name="fct_users_created", platform="hive", env="PROD" ) feature_urn = builder.make_ml_feature_urn( feature_table_name="users_feature_table", feature_name="user_signup_date", ) # Create feature metadata_change_proposal = MetadataChangeProposalWrapper( entityType="mlFeature", changeType=models.ChangeTypeClass.UPSERT, entityUrn=feature_urn, aspectName="mlFeatureProperties", aspect=models.MLFeaturePropertiesClass( description="Represents the date the user created their account", # attaching a source to a feature creates lineage between the feature # and the upstream dataset. This is how lineage between your data warehouse # and machine learning ecosystem is established. sources=[dataset_urn], dataType="TIME", ), ) # Emit metadata! emitter.emit(metadata_change_proposal)