# DataHub Dataset Command The `dataset` command allows you to interact with Dataset entities in DataHub. This includes creating, updating, retrieving, validating, and synchronizing Dataset metadata. ## Commands ### sync Synchronize Dataset metadata between YAML files and DataHub. ```shell datahub dataset sync -f PATH_TO_YAML_FILE --to-datahub|--from-datahub ``` **Options:** - `-f, --file` - Path to the YAML file (required) - `--to-datahub` - Push metadata from YAML file to DataHub - `--from-datahub` - Pull metadata from DataHub to YAML file **Example:** ```shell # Push to DataHub datahub dataset sync -f dataset.yaml --to-datahub # Pull from DataHub datahub dataset sync -f dataset.yaml --from-datahub ``` The `sync` command offers bidirectional synchronization, allowing you to keep your local YAML files in sync with the DataHub platform. The `upsert` command actually uses `sync` with the `--to-datahub` flag internally. For details on the supported YAML format, see the [Dataset YAML Format](#dataset-yaml-format) section. ### file Operate on a Dataset YAML file for validation or linting. ```shell datahub dataset file [--lintCheck] [--lintFix] PATH_TO_YAML_FILE ``` **Options:** - `--lintCheck` - Check the YAML file for formatting issues (optional) - `--lintFix` - Fix formatting issues in the YAML file (optional) **Example:** ```shell # Check for linting issues datahub dataset file --lintCheck dataset.yaml # Fix linting issues datahub dataset file --lintFix dataset.yaml ``` This command helps maintain consistent formatting of your Dataset YAML files. For more information on the expected format, refer to the [Dataset YAML Format](#dataset-yaml-format) section. ### upsert Create or update Dataset metadata in DataHub. ```shell datahub dataset upsert -f PATH_TO_YAML_FILE ``` **Options:** - `-f, --file` - Path to the YAML file containing Dataset metadata (required) **Example:** ```shell datahub dataset upsert -f dataset.yaml ``` This command will parse the YAML file, validate that any entity references exist in DataHub, and then emit the corresponding metadata change proposals to update or create the Dataset. For details on the required structure of your YAML file, see the [Dataset YAML Format](#dataset-yaml-format) section. ### get Retrieve Dataset metadata from DataHub and optionally write it to a file. ```shell datahub dataset get --urn DATASET_URN [--to-file OUTPUT_FILE] ``` **Options:** - `--urn` - The Dataset URN to retrieve (required) - `--to-file` - Path to write the Dataset metadata as YAML (optional) **Example:** ```shell datahub dataset get --urn "urn:li:dataset:(urn:li:dataPlatform:hive,example_table,PROD)" --to-file my_dataset.yaml ``` If the URN does not start with `urn:li:dataset:`, it will be automatically prefixed. The output file will be formatted according to the [Dataset YAML Format](#dataset-yaml-format) section. ### add_sibling Add sibling relationships between Datasets. ```shell datahub dataset add_sibling --urn PRIMARY_URN --sibling-urns SECONDARY_URN [--sibling-urns ANOTHER_URN ...] ``` **Options:** - `--urn` - URN of the primary Dataset (required) - `--sibling-urns` - URNs of secondary sibling Datasets (required, multiple allowed) **Example:** ```shell datahub dataset add_sibling --urn "urn:li:dataset:(urn:li:dataPlatform:hive,example_table,PROD)" --sibling-urns "urn:li:dataset:(urn:li:dataPlatform:snowflake,example_table,PROD)" ``` Siblings are semantically equivalent datasets, typically representing the same data across different platforms or environments. ## Dataset YAML Format The Dataset YAML file follows a structured format with various supported fields: ```yaml # Basic identification (required) id: "example_table" # Dataset identifier platform: "hive" # Platform name env: "PROD" # Environment (PROD by default) # Metadata (optional) name: "Example Table" # Display name (defaults to id if not specified) description: "This is an example table" # Schema definition (optional) schema: fields: - id: "field1" # Field identifier type: "string" # Data type description: "First field" # Field description doc: "First field" # Alias for description nativeDataType: "VARCHAR" # Native platform type (defaults to type if not specified) nullable: false # Whether field can be null (default: false) label: "Field One" # Display label (optional business label for the field) isPartOfKey: true # Whether field is part of primary key isPartitioningKey: false # Whether field is a partitioning key jsonProps: { "customProp": "value" } # Custom JSON properties - id: "field2" type: "number" description: "Second field" nullable: true globalTags: ["PII", "Sensitive"] glossaryTerms: ["urn:li:glossaryTerm:Revenue"] structured_properties: property1: "value1" property2: 42 file: example.schema.avsc # Optional schema file (required if defining tables with nested fields) # Additional metadata (all optional) properties: # Custom properties as key-value pairs origin: "external" pipeline: "etl_daily" subtype: "View" # Dataset subtype subtypes: ["View", "Materialized"] # Multiple subtypes (if only one, use subtype field instead) downstreams: # Downstream Dataset URNs - "urn:li:dataset:(urn:li:dataPlatform:hive,downstream_table,PROD)" tags: # Tags - "Tier1" - "Verified" glossary_terms: # Associated glossary terms - "urn:li:glossaryTerm:Revenue" owners: # Dataset owners - "jdoe" # Simple format (defaults to TECHNICAL_OWNER) - id: "alice" # Extended format with ownership type type: "BUSINESS_OWNER" structured_properties: # Structured properties priority: "P1" cost_center: 123 external_url: "https://example.com/datasets/example_table" ``` You can also define multiple datasets in a single YAML file by using a list format: ```yaml - id: "dataset1" platform: "hive" description: "First dataset" # other properties... - id: "dataset2" platform: "snowflake" description: "Second dataset" # other properties... ``` ### Schema Definition You can define Dataset schema in two ways: 1. **Direct field definitions** as shown above > **Important limitation**: When using inline schema field definitions, only non-nested (flat) fields are currently supported. For nested or complex schemas, you must use the Avro file approach described below. 2. **Reference to an Avro schema file**: ```yaml schema: file: "path/to/schema.avsc" ``` Even when using the Avro file approach for the basic schema structure, you can still use the `fields` section to provide additional metadata like structured properties, tags, and glossary terms for your schema fields. #### Schema Field Properties The Schema Field object supports the following properties: | Property | Type | Description | | ----------------------- | ------- | ----------------------------------------------------------------------------- | | `id` | string | Field identifier/path (required if `urn` not provided) | | `urn` | string | URN of the schema field (required if `id` not provided) | | `type` | string | Data type (one of the supported [Field Types](#field-types)) | | `nativeDataType` | string | Native data type in the source platform (defaults to `type` if not specified) | | `description` | string | Field description | | `doc` | string | Alias for description | | `nullable` | boolean | Whether the field can be null (default: false) | | `label` | string | Display label for the field | | `recursive` | boolean | Whether the field is recursive (default: false) | | `isPartOfKey` | boolean | Whether the field is part of the primary key | | `isPartitioningKey` | boolean | Whether the field is a partitioning key | | `jsonProps` | object | Custom JSON properties | | `globalTags` | array | List of tags associated with the field | | `glossaryTerms` | array | List of glossary terms associated with the field | | `structured_properties` | object | Structured properties for the field | **Important Note on Schema Field Types**: When specifying fields in the YAML file, you must follow an all-or-nothing approach with the `type` field: - If you want the command to generate the schema for you, specify the `type` field for ALL fields. - If you only want to add field-level metadata (like tags, glossary terms, or structured properties), do NOT specify the `type` field for ANY field. Example of fields with only metadata (no types): ```yaml schema: fields: - id: "field1" # Field identifier structured_properties: prop1: prop_value - id: "field2" structured_properties: prop1: prop_value ``` ### Ownership Types When specifying owners, the following ownership types are supported: - `TECHNICAL_OWNER` (default) - `BUSINESS_OWNER` - `DATA_STEWARD` Custom ownership types can be specified using the URN format. ### Field Types When defining schema fields, the following primitive types are supported: - `string` - `number` - `int` - `long` - `float` - `double` - `boolean` - `bytes` - `fixed` ## Implementation Notes - URNs are generated automatically if not provided, based on the platform, id, and env values - The command performs validation to ensure referenced entities (like structured properties) exist - When updating schema fields, changes are propagated correctly to maintain consistent metadata - The Dataset object will check for existence of entity references and will skip datasets with missing references - When using the `sync` command with `--from-datahub`, existing YAML files will be updated with metadata from DataHub while preserving comments and structure - For structured properties, single values are simplified (not wrapped in lists) when appropriate - Field paths are simplified for better readability - When specifying field types, all fields must have type information or none of them should