### Auth Configuration You can configure the MLflow source to authenticate with the MLflow server using the `username` and `password` configuration options. ```yaml source: type: mlflow config: tracking_uri: "http://127.0.0.1:5000" username: password: ``` ### Dataset Lineage You can map MLflow run datasets to specific DataHub platforms using the `source_mapping_to_platform` configuration option. This allows you to specify which DataHub platform should be associated with datasets from different MLflow engines. Example: ```yaml source_mapping_to_platform: huggingface: snowflake # Maps Hugging Face datasets to Snowflake platform http: s3 # Maps HTTP data sources to s3 platform ``` By default, DataHub will attempt to connect lineage with existing datasets based on the platform and name, but will not create new datasets if they don't exist. To enable automatic dataset creation and lineage mapping, use the `materialize_dataset_inputs` option: ```yaml materlize_dataset_inputs: true # Creates new datasets if they don't exist ``` You can configure these options independently: ```yaml # Only map to existing datasets materlize_dataset_inputs: false source_mapping_to_platform: huggingface: snowflake # Maps Hugging Face datasets to Snowflake platform pytorch: snowflake # Maps PyTorch datasets to Snowflake platform # Create new datasets and map platforms materlize_dataset_inputs: true source_mapping_to_platform: huggingface: snowflake pytorch: snowflake ```