from datahub.metadata.urns import MlModelGroupUrn from datahub.sdk import DataHubClient from datahub.sdk.mlmodel import MLModel client = DataHubClient.from_env() mlmodel = MLModel( id="customer-churn-predictor", name="Customer Churn Prediction Model", platform="mlflow", description="A gradient boosting model that predicts customer churn based on usage patterns and engagement metrics", custom_properties={ "framework": "xgboost", "framework_version": "1.7.0", "model_format": "pickle", }, model_group=MlModelGroupUrn(platform="mlflow", name="customer-churn-models"), ) client.entities.upsert(mlmodel)