# Hive For context on getting started with ingestion, check out our [metadata ingestion guide](../README.md). ## Setup To install this plugin, run `pip install 'acryl-datahub[hive]'`. ## Capabilities This plugin extracts the following: - Metadata for databases, schemas, and tables - Column types associated with each table - Detailed table and storage information - Table, row, and column statistics via optional [SQL profiling](./sql_profiles.md) | Capability | Status | Details | |-------------------|--------|------------------------------------------| | Platform Instance | ✔️ | [link](../../docs/platform-instances.md) | | Data Containers | ✔️ | | | Data Domains | ✔️ | [link](../../docs/domains.md) | ## Quickstart recipe Check out the following recipe to get started with ingestion! See [below](#config-details) for full configuration options. For general pointers on writing and running a recipe, see our [main recipe guide](../README.md#recipes). ```yml source: type: hive config: # Coordinates host_port: localhost:10000 database: DemoDatabase # optional, if not specified, ingests from all databases # Credentials username: user # optional password: pass # optional # For more details on authentication, see the PyHive docs: # https://github.com/dropbox/PyHive#passing-session-configuration. # LDAP, Kerberos, etc. are supported using connect_args, which can be # added under the `options` config parameter. #scheme: 'hive+http' # set this if Thrift should use the HTTP transport #scheme: 'hive+https' # set this if Thrift should use the HTTP with SSL transport sink: # sink configs ``` Ingestion with
Azure HDInsight ```yml # Connecting to Microsoft Azure HDInsight using TLS. source: type: hive config: # Coordinates host_port: .azurehdinsight.net:443 # Credentials username: admin password: password # Options options: connect_args: http_path: "/hive2" auth: BASIC sink: # sink configs ```
Databricks Ensure that databricks-dbapi is installed. If not, use ```pip install databricks-dbapi``` to install. Use the ```http_path``` from your Databricks cluster in the following recipe. See [here](https://docs.databricks.com/integrations/bi/jdbc-odbc-bi.html#get-server-hostname-port-http-path-and-jdbc-url) for instructions to find ```http_path```. ```yml source: type: hive config: host_port: :443 username: token password: scheme: 'databricks+pyhive' options: connect_args: http_path: 'sql/protocolv1/o/xxxyyyzzzaaasa/1234-567890-hello123' sink: # sink configs ```
## Config details Note that a `.` is used to denote nested fields in the YAML recipe. As a SQL-based service, the Athena integration is also supported by our SQL profiler. See [here](./sql_profiles.md) for more details on configuration. | Field | Required | Default | Description | |--------------------------------|----------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | `username` | | | Database username. | | `password` | | | Database password. | | `host_port` | ✅ | | Host URL and port to connect to. | | `database` | | | Database to ingest. | | `database_alias` | | | Alias to apply to database when ingesting. Use `platform_instance` instead of this for supporting multiple Hive instances. | | `env` | | `"PROD"` | Environment to use in namespace when constructing URNs. | | `platform_instance` | | None | The Platform instance to use while constructing URNs. | | `options.