import Tabs from '@theme/Tabs'; import TabItem from '@theme/TabItem'; # ML System ## Why Would You Integrate ML System with DataHub? Machine learning systems have become a crucial feature in modern data stacks. However, the relationships between the different components of a machine learning system, such as features, models, and feature tables, can be complex. Thus, it is essential for these systems to be discoverable to facilitate easy access and utilization by other members of the organization. For more information on ML entities, please refer to the following docs: - [MlFeature](/docs/generated/metamodel/entities/mlFeature.md) - [MlFeatureTable](/docs/generated/metamodel/entities/mlFeatureTable.md) - [MlModel](/docs/generated/metamodel/entities/mlModel.md) - [MlModelGroup](/docs/generated/metamodel/entities/mlModelGroup.md) ### Goal Of This Guide This guide will show you how to - Create ML entities: MlFeature, MlFeatureTable, MlModel, MlModelGroup - Read ML entities: MlFeature, MlFeatureTable, MlModel, MlModelGroup - Attach MlFeatureTable or MlModel to MlFeature ## Prerequisites For this tutorial, you need to deploy DataHub Quickstart and ingest sample data. For detailed steps, please refer to [Datahub Quickstart Guide](/docs/quickstart.md). ## Create ML Entities ### Create MlFeature ```python {{ inline /metadata-ingestion/examples/library/create_mlfeature.py show_path_as_comment }} ``` Note that when creating a feature, you can access a list of data sources using `sources`. ### Create MlFeatureTable ```python {{ inline /metadata-ingestion/examples/library/create_mlfeature_table.py show_path_as_comment }} ``` Note that when creating a feature table, you can access a list of features using `mlFeatures`. ### Create MlModel Please note that an MlModel represents the outcome of a single training run for a model, not the collective results of all model runs. ```python {{ inline /metadata-ingestion/examples/library/create_mlmodel.py show_path_as_comment }} ``` Note that when creating a model, you can access a list of features using `mlFeatures`. Additionally, you can access the relationship to model groups with `groups`. ### Create MlModelGroup Please note that an MlModelGroup serves as a container for all the runs of a single ML model. ```python {{ inline /metadata-ingestion/examples/library/create_mlmodel_group.py show_path_as_comment }} ``` ### Expected Outcome of creating entities You can search the entities in DataHub UI. ![feature-table-created](../../imgs/apis/tutorials/feature-table-created.png) ![model-group-created](../../imgs/apis/tutorials/model-group-created.png) ## Read ML Entities ### Read MLFeature ```json query { mlFeature(urn: "urn:li:mlFeature:(test_feature_table_all_feature_dtypes,test_BOOL_LIST_feature)"){ name featureNamespace description properties { description dataType version { versionTag } } } } ``` Expected response: ```json { "data": { "mlFeature": { "name": "test_BOOL_LIST_feature", "featureNamespace": "test_feature_table_all_feature_dtypes", "description": null, "properties": { "description": null, "dataType": "SEQUENCE", "version": null } } }, "extensions": {} } ``` ```json curl --location --request POST 'http://localhost:8080/api/graphql' \ --header 'Authorization: Bearer ' \ --header 'Content-Type: application/json' \ --data-raw '{ "query": "{ mlFeature(urn: \"urn:li:mlFeature:(test_feature_table_all_feature_dtypes,test_BOOL_LIST_feature)\") { name featureNamespace description properties { description dataType version { versionTag } } } }" }' ``` Expected response: ```json { "data": { "mlFeature": { "name": "test_BOOL_LIST_feature", "featureNamespace": "test_feature_table_all_feature_dtypes", "description": null, "properties": { "description": null, "dataType": "SEQUENCE", "version": null } } }, "extensions": {} } ``` ```python {{ inline /metadata-ingestion/examples/library/read_mlfeature.py show_path_as_comment }} ``` ### Read MLFeatureTable ```json query { mlFeatureTable(urn: "urn:li:mlFeatureTable:(urn:li:dataPlatform:feast,test_feature_table_all_feature_dtypes)"){ name description platform { name } properties { description mlFeatures { name } } } } ``` Expected Response: ```json { "data": { "mlFeatureTable": { "name": "test_feature_table_all_feature_dtypes", "description": null, "platform": { "name": "feast" }, "properties": { "description": null, "mlFeatures": [ { "name": "test_BOOL_LIST_feature" }, ... { "name": "test_STRING_feature" } ] } } }, "extensions": {} } ``` ```json curl --location --request POST 'http://localhost:8080/api/graphql' \ --header 'Authorization: Bearer ' \ --header 'Content-Type: application/json' \ --data-raw '{ "query": "{ mlFeatureTable(urn: \"urn:li:mlFeatureTable:(urn:li:dataPlatform:feast,test_feature_table_all_feature_dtypes)\") { name description platform { name } properties { description mlFeatures { name } } } }" }' ``` Expected Response: ```json { "data": { "mlFeatureTable": { "name": "test_feature_table_all_feature_dtypes", "description": null, "platform": { "name": "feast" }, "properties": { "description": null, "mlFeatures": [ { "name": "test_BOOL_LIST_feature" }, ... { "name": "test_STRING_feature" } ] } } }, "extensions": {} } ``` ```python {{ inline /metadata-ingestion/examples/library/read_mlfeature_table.py show_path_as_comment }} ``` ### Read MLModel ```json query { mlModel(urn: "urn:li:mlModel:(urn:li:dataPlatform:science,scienceModel,PROD)"){ name description properties { description version type mlFeatures groups { urn name } } } } ``` Expected Response: ```json { "data": { "mlModel": { "name": "scienceModel", "description": "A sample model for predicting some outcome.", "properties": { "description": "A sample model for predicting some outcome.", "version": null, "type": "Naive Bayes classifier", "mlFeatures": null, "groups": [] } } }, "extensions": {} } ``` ```json curl --location --request POST 'http://localhost:8080/api/graphql' \ --header 'Authorization: Bearer ' \ --header 'Content-Type: application/json' \ --data-raw '{ "query": "{ mlModel(urn: \"urn:li:mlModel:(urn:li:dataPlatform:science,scienceModel,PROD)\") { name description properties { description version type mlFeatures groups { urn name } } } }" }' ``` Expected Response: ```json { "data": { "mlModel": { "name": "scienceModel", "description": "A sample model for predicting some outcome.", "properties": { "description": "A sample model for predicting some outcome.", "version": null, "type": "Naive Bayes classifier", "mlFeatures": null, "groups": [] } } }, "extensions": {} } ``` ```python {{ inline /metadata-ingestion/examples/library/read_mlmodel.py show_path_as_comment }} ``` ### Read MLModelGroup ```json query { mlModelGroup(urn: "urn:li:mlModelGroup:(urn:li:dataPlatform:science,my-model-group,PROD)"){ name description platform { name } properties { description } } } ``` Expected Response: (Note that this entity does not exist in the sample ingestion and you might want to create this entity first.) ```json { "data": { "mlModelGroup": { "name": "my-model-group", "description": "my model group", "platform": { "name": "science" }, "properties": { "description": "my model group" } } }, "extensions": {} } ``` ```json curl --location --request POST 'http://localhost:8080/api/graphql' \ --header 'Authorization: Bearer ' \ --header 'Content-Type: application/json' \ --data-raw '{ "query": "{ mlModelGroup(urn: \"urn:li:mlModelGroup:(urn:li:dataPlatform:science,my-model-group,PROD)\") { name description platform { name } properties { description } } }" }' ``` Expected Response: (Note that this entity does not exist in the sample ingestion and you might want to create this entity first.) ```json { "data": { "mlModelGroup": { "name": "my-model-group", "description": "my model group", "platform": { "name": "science" }, "properties": { "description": "my model group" } } }, "extensions": {} } ``` ```python {{ inline /metadata-ingestion/examples/library/read_mlmodel_group.py show_path_as_comment }} ``` ## Add ML Entities ### Add MlFeature to MlFeatureTable ```python {{ inline /metadata-ingestion/examples/library/add_mlfeature_to_mlfeature_table.py show_path_as_comment }} ``` ### Add MlFeature to MLModel ```python {{ inline /metadata-ingestion/examples/library/add_mlfeature_to_mlmodel.py show_path_as_comment }} ``` ### Add MLGroup To MLModel ```python {{ inline /metadata-ingestion/examples/library/add_mlgroup_to_mlmodel.py show_path_as_comment }} ``` ### Expected Outcome of Adding ML Entities You can access to `Features` or `Group` Tab of each entity to view the added entities. ![feature-added-to-model](../../imgs/apis/tutorials/feature-added-to-model.png) ![model-group-added-to-model](../../imgs/apis/tutorials/model-group-added-to-model.png)