# # Copyright 2015 LinkedIn Corp. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # import json import datetime import sys, os import time from org.slf4j import LoggerFactory from wherehows.common.writers import FileWriter from wherehows.common.schemas import DatasetSchemaRecord, DatasetFieldRecord from wherehows.common import Constant from HiveExtract import TableInfo from org.apache.hadoop.hive.ql.tools import LineageInfo from metadata.etl.dataset.hive import HiveViewDependency class HiveTransform: def __init__(self): self.logger = LoggerFactory.getLogger('jython script : ' + self.__class__.__name__) def transform(self, input, hive_metadata, hive_field_metadata): """ convert from json to csv :param input: input json file :param hive_metadata: output data file for hive table metadata :param hive_field_metadata: output data file for hive field metadata :return: """ f_json = open(input) all_data = json.load(f_json) f_json.close() schema_file_writer = FileWriter(hive_metadata) field_file_writer = FileWriter(hive_field_metadata) lineageInfo = LineageInfo() # one db info : 'type', 'database', 'tables' # one table info : required : 'name' , 'type', 'serializationFormat' ,'createTime', 'DB_ID', 'TBL_ID', 'SD_ID' # optional : 'schemaLiteral', 'schemaUrl', 'fieldDelimiter', 'fieldList' for one_db_info in all_data: i = 0 for table in one_db_info['tables']: i += 1 schema_json = {} prop_json = {} # set the prop json for prop_name in TableInfo.optional_prop: if prop_name in table and table[prop_name] is not None: prop_json[prop_name] = table[prop_name] if TableInfo.view_expended_text in prop_json: text = prop_json[TableInfo.view_expended_text].replace('`', '') array = HiveViewDependency.getViewDependency(text) l = [] for a in array: l.append(a) prop_json['view_depends_on'] = l # process either schema flds = {} field_detail_list = [] if TableInfo.schema_literal in table and table[TableInfo.schema_literal] is not None: sort_id = 0 try: schema_data = json.loads(table[TableInfo.schema_literal]) except ValueError: self.logger.error("Schema json error for table : \n" + str(table)) schema_json = schema_data # process each field for field in schema_data['fields']: field_name = field['name'] type = field['type'] # could be a list default_value = field['default'] if 'default' in field else None doc = field['doc'] if 'doc' in field else None attributes_json = json.loads(field['attributes_json']) if 'attributes_json' in field else None pk = delta = is_nullable = is_indexed = is_partitioned = inside_type = format = data_size = None if attributes_json: pk = attributes_json['pk'] if 'pk' in attributes_json else None delta = attributes_json['delta'] if 'delta' in attributes_json else None is_nullable = attributes_json['nullable'] if 'nullable' in attributes_json else None inside_type = attributes_json['type'] if 'type' in attributes_json else None format = attributes_json['format'] if 'format' in attributes_json else None flds[field_name] = {'type': type} # String urn, Integer sortId, Integer parentSortId, String parentPath, String fieldName, #String dataType, String isNullable, String defaultValue, Integer dataSize, String namespace, String description sort_id += 1 field_detail_list.append( ["hive:///%s/%s" % (one_db_info['database'], table['name']), str(sort_id), '0', None, field_name, '', type, data_size, None, None, is_nullable, is_indexed, is_partitioned, default_value, None, json.dumps(attributes_json)]) elif TableInfo.field_list in table: schema_json = {'type': 'record', 'name': table['name'], 'fields': table[TableInfo.field_list]} # construct a schema for data came from COLUMN_V2 for field in table[TableInfo.field_list]: field_name = field['ColumnName'] type = field['TypeName'] # ColumnName, IntegerIndex, TypeName, Comment flds[field_name] = {'type': type} pk = delta = is_nullable = is_indexed = is_partitioned = inside_type = format = data_size = default_value = None # TODO ingest field_detail_list.append( ["hive:///%s/%s" % (one_db_info['database'], table['name']), field['IntegerIndex'], '0', None, field_name, '', field['TypeName'], None, None, None, is_nullable, is_indexed, is_partitioned, default_value, None, None]) dataset_scehma_record = DatasetSchemaRecord(table['name'], json.dumps(schema_json), json.dumps(prop_json), json.dumps(flds), "hive:///%s/%s" % (one_db_info['database'], table['name']), 'Hive', '', (table[TableInfo.create_time] if table.has_key( TableInfo.create_time) else None), (table["lastAlterTime"]) if table.has_key("lastAlterTime") else None) schema_file_writer.append(dataset_scehma_record) for fields in field_detail_list: field_record = DatasetFieldRecord(fields) field_file_writer.append(field_record) schema_file_writer.flush() field_file_writer.flush() self.logger.info("%20s contains %6d tables" % (one_db_info['database'], i)) schema_file_writer.close() field_file_writer.close() def convert_timestamp(self, time_string): return int(time.mktime(time.strptime(time_string, "%Y-%m-%d %H:%M:%S"))) if __name__ == "__main__": args = sys.argv[1] t = HiveTransform() t.transform(args[Constant.HIVE_SCHEMA_JSON_FILE_KEY], args[Constant.HIVE_SCHEMA_CSV_FILE_KEY], args[Constant.HIVE_FIELD_METADATA_KEY])