
UI Overview
DataHub

11/05/2020 Ignacio Bona

Tech Stack

• Typescript - like JS with types

• Ember - our SPA framework

• Yarn Workspaces - multiple npm packages in a single location

Ember Overview

• app - This is where most code is
○ routes - routes handlers for our application
■ index.ts

○ templates - templates for the routes*
■ index.hbs

○ components - ui reusable components*
■ component1.hbs
■ component1.ts

○ routes.ts - path for the routes

Ember Addon Overview

• app - the contents of this folder will be merge with your host app, no actual code is
written under this folder. Only re-export for components and services.

• addon - this is where most of the code for addons will live
○ components
○ services
○ ...

Example

• app
○ component
■ component1.js

○ service
■ service1.js

• addon
○ utils
■ util.ts

○ component
■ component1.ts
■ component1.hbs

○ service
■ service1.ts

• app
○ component
■ component2.ts

○ service
■ service2.ts

+ =
• app
○ component
■ component1.js
■ component2.js

○ service
■ service1.js
■ service2.js

Addon App Result

DataHub Folder Structure

• package/data-portal - main ember app
• @datahub - group all the DataHub functionality
• @nacho-ui - UI framework (buttons, tables) components
• @dh-tools - group some tooling like *.pdl to *.ts transformer
• @yourcompany - potentially where you should add your custom entities and code

Package/Data-Portal

• Main ember application
• It should be almost *empty* as all components, routes will come from addons
• Imports all addons, including @yourcompany custom addons

Thoughts
• How can we make the app more flexible to include dynamically custom addons?
○ Mitigated by allowing forking this part as it shouldn’t contain code

In progress
• Move out old components and routes

pills Pill/Tag components

table Generic table that allows dynamic table rendering

buttons Primary, secondary buttons, etc...

dropdown Dropdown/Selects wrappers that allow easy option selections

avatar User related components (like picture or name with picture)

animation Related animation styles and components like loading status

@nacho-ui/nacho-core

• Custom UI Framework that we use for DataHub
• It contains from simple components like buttons

In progress
• Some nacho components still live under data-portal and should be moved to this library

Util Util package that contains utility functions and simple multipurpose components

Metadata-Types Originally was serving pure model type definitions, however, since we introduced automatic model type generation, most of
the code in this package is generated (in progress)..

Data-Models
Model abstractions
Api calls
Models configuration

Shared All common functionally, components, routes that makes DataHub… DataHub :)

Entities Top level addon that contains components that are only related to an entity

@datahub

What is a generated model? (metadata-types)
 interface Dataset {

 description: string;

 removed: boolean;

 deprecation?: Com.Linkedin.Dataset.DatasetDeprecation;

 datasetUpstreamLineage?: Com.Linkedin.Dataset.DatasetUpstreamLineage;

 entityTopUsage?: Com.Linkedin.Common.EntityTopUsage;

 follow?: Com.Linkedin.Common.Follow;

 health?: Com.Linkedin.Common.Health;

 institutionalMemory?: Com.Linkedin.Common.InstitutionalMemory;

 likes?: Com.Linkedin.Common.Likes;

 ownership?: Com.Linkedin.Common.Ownership;

 ownershipSuggestion?: Com.Linkedin.Common.OwnershipSuggestion;

 upstreamLineage?: Com.Linkedin.Dataset.UpstreamLineage;

 status?: Com.Linkedin.Common.Status;

 tags: string[];

 properties?: { [id: string]: string };

 }

• It is the data that comes from the backend (GMA)

What is a model abstraction? (data-models)
@statics<IBaseEntityStatics<Dataset>>()

export class DatasetEntity extends BaseEntity<Dataset> {

 static displayName: 'datasets' = 'datasets';

 static get renderProps(): IEntityRenderProps {

 return ...;

 }

 @oneWay('entity.description')

 description?: string;

}

• It is a wrapper around the backend data that allows abstractions on top and custom
massaging

• It also defines configuration around this entity that will determine what to show in
search, entity page and browsing (Render Props).

What is render-props? (data-models)
export interface IEntityRenderProps {

 apiEntityName: string;

 search: IEntityRenderPropsSearch;

 browse?: IEntityRenderPropsBrowse;

 entityPage?: IEntityRenderPropsEntityPage;

}

• It defines how this entity should show in these sections:

Search Browse Entity Page

What is render-props for search? (data-models)

Properties to show

Additional components you may want to render

Desired filters

What is render-props for browse? (data-models)

Not much to customize for now, but
you can enable or disable search,
as hierarchy comes from ES (elastic
search)

What is render-props for entity page? (data-models)

Breadcrumbs if browse is enabled
Tags to show

Additional custom header components for
this entity

Available tabs and its contents. It can be
a completely custom component or a
existing component like a table

Components in @datahub/shared

Components that are shareable across the app. For example:

@datahub/shared/addon/components/social/social-action.ts

Entity components in @datahub/entities

Custom components that are only valid for specific entity. For example:

@datahub/entities/addon/components/datasets/dataset-schema.ts

How to customize DataHub?

Good topic for next session!

Sneak peak: Add your own package with your own:

• Custom components (if needed as we provide some generic ones)
• Models (what’s the shape of the data)
• Configuration (what to show where)

What are we improving?

Finalize all migrations like moving data-portal code to @datahub
Automatic model generation from open source
Update APIs (mid tier)
Move to open source first

Thank you

