import json import types import unittest.mock from pathlib import Path from typing import Any, Dict, Iterable, List, Optional, Union import avro.schema import click import pydantic import yaml from avrogen import write_schema_files ENTITY_CATEGORY_UNSET = "_unset_" class EntityType(pydantic.BaseModel): name: str doc: Optional[str] = None category: str = ENTITY_CATEGORY_UNSET keyAspect: str aspects: List[str] def load_entity_registry(entity_registry_file: Path) -> List[EntityType]: with entity_registry_file.open() as f: raw_entity_registry = yaml.safe_load(f) entities = pydantic.parse_obj_as(List[EntityType], raw_entity_registry["entities"]) return entities def load_schema_file(schema_file: Union[str, Path]) -> dict: raw_schema_text = Path(schema_file).read_text() return json.loads(raw_schema_text) def load_schemas(schemas_path: str) -> Dict[str, dict]: required_schema_files = { "mxe/MetadataChangeEvent.avsc", "mxe/MetadataChangeProposal.avsc", "usage/UsageAggregation.avsc", "mxe/MetadataChangeLog.avsc", "mxe/PlatformEvent.avsc", "platform/event/v1/EntityChangeEvent.avsc", "metadata/query/filter/Filter.avsc", # temporarily added to test reserved keywords support } # Find all the aspect schemas / other important schemas. schema_files: List[Path] = [] for schema_file in Path(schemas_path).glob("**/*.avsc"): relative_path = schema_file.relative_to(schemas_path).as_posix() if relative_path in required_schema_files: schema_files.append(schema_file) required_schema_files.remove(relative_path) elif load_schema_file(schema_file).get("Aspect"): schema_files.append(schema_file) assert not required_schema_files, f"Schema files not found: {required_schema_files}" schemas: Dict[str, dict] = {} for schema_file in schema_files: schema = load_schema_file(schema_file) schemas[Path(schema_file).stem] = schema return schemas def merge_schemas(schemas_obj: List[Any]) -> str: # Combine schemas. merged = ["null"] + schemas_obj # Patch add_name method to NOT complain about duplicate names def add_name(self, name_attr, space_attr, new_schema): to_add = avro.schema.Name(name_attr, space_attr, self.default_namespace) self.names[to_add.fullname] = new_schema return to_add with unittest.mock.patch("avro.schema.Names.add_name", add_name): cleaned_schema = avro.schema.make_avsc_object(merged) # Convert back to an Avro schema JSON representation. class MappingProxyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, types.MappingProxyType): return dict(obj) return json.JSONEncoder.default(self, obj) out_schema = cleaned_schema.to_json() encoded = json.dumps(out_schema, cls=MappingProxyEncoder, indent=2) return encoded autogen_header = """# flake8: noqa # This file is autogenerated by /metadata-ingestion/scripts/avro_codegen.py # Do not modify manually! # pylint: skip-file # fmt: off """ autogen_footer = """ # fmt: on """ def suppress_checks_in_file(filepath: Union[str, Path]) -> None: """ Adds a couple lines to the top of an autogenerated file: - Comments to suppress flake8 and black. - A note stating that the file was autogenerated. """ with open(filepath, "r+") as f: contents = f.read() f.seek(0, 0) f.write(autogen_header) f.write(contents) f.write(autogen_footer) def add_avro_python3_warning(filepath: Path) -> None: contents = filepath.read_text() contents = f""" # The SchemaFromJSONData method only exists in avro-python3, but is called make_avsc_object in avro. # We can use this fact to detect conflicts between the two packages. Pip won't detect those conflicts # because both are namespace packages, and hence are allowed to overwrite files from each other. # This means that installation order matters, which is a pretty unintuitive outcome. # See https://github.com/pypa/pip/issues/4625 for details. try: from avro.schema import SchemaFromJSONData import warnings warnings.warn("It seems like 'avro-python3' is installed, which conflicts with the 'avro' package used by datahub. " + "Try running `pip uninstall avro-python3 && pip install --upgrade --force-reinstall avro` to fix this issue.") except ImportError: pass {contents} """ filepath.write_text(contents) load_schema_method = """ import functools import pathlib def _load_schema(schema_name: str) -> str: return (pathlib.Path(__file__).parent / f"{schema_name}.avsc").read_text() """ individual_schema_method = """ @functools.lru_cache(maxsize=None) def get{schema_name}Schema() -> str: return _load_schema("{schema_name}") """ def make_load_schema_methods(schemas: Iterable[str]) -> str: return load_schema_method + "".join( individual_schema_method.format(schema_name=schema) for schema in schemas ) def annotate_aspects(aspects: List[dict], schema_class_file: Path) -> None: schema_classes_lines = schema_class_file.read_text().splitlines() line_lookup_table = {line: i for i, line in enumerate(schema_classes_lines)} # Create the Aspect class. # We ensure that it cannot be instantiated directly, as # per https://stackoverflow.com/a/7989101/5004662. schema_classes_lines[ line_lookup_table["__SCHEMAS: Dict[str, RecordSchema] = {}"] ] += """ class _Aspect(DictWrapper): ASPECT_NAME: str = None # type: ignore ASPECT_TYPE: str = "default" ASPECT_INFO: dict = None # type: ignore def __init__(self): if type(self) is _Aspect: raise TypeError("_Aspect is an abstract class, and cannot be instantiated directly.") super().__init__() @classmethod def get_aspect_name(cls) -> str: return cls.ASPECT_NAME # type: ignore @classmethod def get_aspect_type(cls) -> str: return cls.ASPECT_TYPE @classmethod def get_aspect_info(cls) -> dict: return cls.ASPECT_INFO """ for aspect in aspects: className = f'{aspect["name"]}Class' aspectName = aspect["Aspect"]["name"] class_def_original = f"class {className}(DictWrapper):" # Make the aspects inherit from the Aspect class. class_def_line = line_lookup_table[class_def_original] schema_classes_lines[class_def_line] = f"class {className}(_Aspect):" # Define the ASPECT_NAME class attribute. # There's always an empty line between the docstring and the RECORD_SCHEMA class attribute. # We need to find it and insert our line of code there. empty_line = class_def_line + 1 while not ( schema_classes_lines[empty_line].strip() == "" and schema_classes_lines[empty_line + 1] .strip() .startswith("RECORD_SCHEMA = ") ): empty_line += 1 schema_classes_lines[empty_line] = "\n" schema_classes_lines[empty_line] += f"\n ASPECT_NAME = '{aspectName}'" if "type" in aspect["Aspect"]: schema_classes_lines[ empty_line ] += f"\n ASPECT_TYPE = '{aspect['Aspect']['type']}'" schema_classes_lines[empty_line] += f"\n ASPECT_INFO = {aspect['Aspect']}" schema_classes_lines[empty_line + 1] += "\n" # Finally, generate a big list of all available aspects. newline = "\n" schema_classes_lines.append( f""" from typing import Type ASPECT_CLASSES: List[Type[_Aspect]] = [ {f',{newline} '.join(f"{aspect['name']}Class" for aspect in aspects)} ] KEY_ASPECTS: Dict[str, Type[_Aspect]] = {{ {f',{newline} '.join(f"'{aspect['Aspect']['keyForEntity']}': {aspect['name']}Class" for aspect in aspects if aspect['Aspect'].get('keyForEntity'))} }} """ ) schema_class_file.write_text("\n".join(schema_classes_lines)) @click.command() @click.argument( "entity_registry", type=click.Path(exists=True, dir_okay=False), required=True ) @click.argument( "schemas_path", type=click.Path(exists=True, file_okay=False), required=True ) @click.argument("outdir", type=click.Path(), required=True) def generate(entity_registry: str, schemas_path: str, outdir: str) -> None: entities = load_entity_registry(Path(entity_registry)) schemas = load_schemas(schemas_path) # Special handling for aspects. aspects = { schema["Aspect"]["name"]: schema for schema in schemas.values() if schema.get("Aspect") } for entity in entities: # This implicitly requires that all keyAspects are resolvable. aspect = aspects[entity.keyAspect] # This requires that entities cannot share a keyAspect. assert "keyForEntity" not in aspect["Aspect"] aspect["Aspect"]["keyForEntity"] = entity.name aspect["Aspect"]["entityCategory"] = entity.category aspect["Aspect"]["entityAspects"] = entity.aspects if entity.doc is not None: aspect["Aspect"]["entityDoc"] = entity.doc # Check for unused aspects. We currently have quite a few. # unused_aspects = set(aspects.keys()) - set().union( # {entity.keyAspect for entity in entities}, # *(set(entity.aspects) for entity in entities), # ) merged_schema = merge_schemas(list(schemas.values())) write_schema_files(merged_schema, outdir) # Schema files post-processing. (Path(outdir) / "__init__.py").write_text("# This file is intentionally empty.\n") add_avro_python3_warning(Path(outdir) / "schema_classes.py") annotate_aspects( list(aspects.values()), Path(outdir) / "schema_classes.py", ) # Save raw schema files in codegen as well. schema_save_dir = Path(outdir) / "schemas" schema_save_dir.mkdir() for schema_out_file, schema in schemas.items(): (schema_save_dir / f"{schema_out_file}.avsc").write_text( json.dumps(schema, indent=2) ) # Add load_schema method. with open(schema_save_dir / "__init__.py", "a") as schema_dir_init: schema_dir_init.write(make_load_schema_methods(schemas.keys())) # Add headers for all generated files generated_files = Path(outdir).glob("**/*.py") for file in generated_files: suppress_checks_in_file(file) if __name__ == "__main__": generate()