1028 lines
32 KiB
Python

import functools
import os
import pathlib
from datetime import datetime, timezone
from unittest.mock import patch
import pytest
from freezegun import freeze_time
from datahub.configuration.datetimes import parse_user_datetime
from datahub.configuration.time_window_config import BucketDuration, get_time_bucket
from datahub.ingestion.source.usage.usage_common import BaseUsageConfig
from datahub.metadata.urns import CorpUserUrn, DatasetUrn
from datahub.sql_parsing.sql_parsing_aggregator import (
KnownQueryLineageInfo,
ObservedQuery,
PreparsedQuery,
QueryLogSetting,
SqlParsingAggregator,
TableRename,
TableSwap,
)
from datahub.sql_parsing.sql_parsing_common import QueryType
from datahub.sql_parsing.sqlglot_lineage import (
ColumnLineageInfo,
ColumnRef,
DownstreamColumnRef,
)
from datahub.testing import mce_helpers
from tests.test_helpers.click_helpers import run_datahub_cmd
RESOURCE_DIR = pathlib.Path(__file__).parent / "aggregator_goldens"
FROZEN_TIME = "2024-02-06T01:23:45Z"
check_goldens_stream = functools.partial(
mce_helpers.check_goldens_stream, ignore_order=False
)
def _ts(ts: int) -> datetime:
return datetime.fromtimestamp(ts, tz=timezone.utc)
def make_basic_aggregator(store: bool = False) -> SqlParsingAggregator:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
query_log=QueryLogSetting.STORE_ALL if store else QueryLogSetting.DISABLED,
)
aggregator.add_observed_query(
ObservedQuery(
query="create table foo as select a, b from bar",
default_db="dev",
default_schema="public",
)
)
return aggregator
@freeze_time(FROZEN_TIME)
def test_basic_lineage(pytestconfig: pytest.Config, tmp_path: pathlib.Path) -> None:
aggregator = make_basic_aggregator()
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_basic_lineage.json",
)
@freeze_time(FROZEN_TIME)
def test_aggregator_dump(pytestconfig: pytest.Config, tmp_path: pathlib.Path) -> None:
# Validates the query log storage + extraction functionality.
aggregator = make_basic_aggregator(store=True)
aggregator.close()
query_log_db = aggregator.report.query_log_path
assert query_log_db is not None
run_datahub_cmd(["check", "extract-sql-agg-log", query_log_db])
output_json_dir = pathlib.Path(query_log_db).with_suffix("")
assert (
len(list(output_json_dir.glob("*.json"))) > 5
) # 5 is arbitrary, but should have at least a couple tables
query_log_json = output_json_dir / "stored_queries.json"
mce_helpers.check_golden_file(
pytestconfig, query_log_json, RESOURCE_DIR / "test_basic_lineage_query_log.json"
)
@freeze_time(FROZEN_TIME)
def test_overlapping_inserts() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator.add_observed_query(
ObservedQuery(
query="insert into downstream (a, b) select a, b from upstream1",
default_db="dev",
default_schema="public",
timestamp=_ts(20),
)
)
aggregator.add_observed_query(
ObservedQuery(
query="insert into downstream (a, c) select a, c from upstream2",
default_db="dev",
default_schema="public",
timestamp=_ts(25),
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_overlapping_inserts.json",
)
@freeze_time(FROZEN_TIME)
def test_temp_table() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator._schema_resolver.add_raw_schema_info(
DatasetUrn("redshift", "dev.public.bar").urn(),
{"a": "int", "b": "int", "c": "int"},
)
aggregator.add_observed_query(
ObservedQuery(
query="create table foo as select a, 2*b as b from bar",
default_db="dev",
default_schema="public",
session_id="session1",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create temp table foo as select a, b+c as c from bar",
default_db="dev",
default_schema="public",
session_id="session2",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create table foo_session2 as select * from foo",
default_db="dev",
default_schema="public",
session_id="session2",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create table foo_session3 as select * from foo",
default_db="dev",
default_schema="public",
session_id="session3",
)
)
# foo_session2 should come from bar (via temp table foo), have columns a and c, and depend on bar.{a,b,c}
# foo_session3 should come from foo, have columns a and b, and depend on bar.b
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_temp_table.json",
)
@freeze_time(FROZEN_TIME)
def test_multistep_temp_table() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator.add_observed_query(
ObservedQuery(
query="create table #temp1 as select a, 2*b as b from upstream1",
default_db="dev",
default_schema="public",
session_id="session1",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create table #temp2 as select b, c from upstream2",
default_db="dev",
default_schema="public",
session_id="session1",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create temp table staging_foo as select up1.a, up1.b, up2.c from #temp1 up1 left join #temp2 up2 on up1.b = up2.b where up1.b > 0",
default_db="dev",
default_schema="public",
session_id="session1",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="insert into table prod_foo\nselect * from staging_foo",
default_db="dev",
default_schema="public",
session_id="session1",
)
)
mcps = list(aggregator.gen_metadata())
# Extra check to make sure that the report is populated correctly.
report = aggregator.report
assert len(report.queries_with_temp_upstreams) == 1
assert (
len(
report.queries_with_temp_upstreams[
"composite_48c238412066895ccad5d27f9425ce969b2c0633203627eb476d0c9e5357825a"
]
)
== 4
)
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_multistep_temp_table.json",
)
@freeze_time(FROZEN_TIME)
def test_overlapping_inserts_from_temp_tables() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
report = aggregator.report
# The "all_returns" table is populated from "#stage_in_person_returns" and "#stage_online_returns".
# #stage_in_person_returns is populated from "in_person_returns" and "customer".
# #stage_online_returns is populated from "online_returns", "customer", and "online_survey".
aggregator.add_observed_query(
ObservedQuery(
query="create table #stage_in_person_returns as select ipr.customer_id, customer.customer_email, ipr.return_date "
"from in_person_returns ipr "
"left join customer on in_person_returns.customer_id = customer.customer_id",
default_db="dev",
default_schema="public",
session_id="1234",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create table #stage_online_returns as select online_ret.customer_id, customer.customer_email, online_ret.return_date, online_survey.return_reason "
"from online_returns online_ret "
"left join customer on online_ret.customer_id = customer.customer_id "
"left join online_survey on online_ret.customer_id = online_survey.customer_id and online_ret.return_id = online_survey.event_id",
default_db="dev",
default_schema="public",
session_id="2323",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="insert into all_returns (customer_id, customer_email, return_date) select customer_id, customer_email, return_date from #stage_in_person_returns",
default_db="dev",
default_schema="public",
session_id="1234",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="insert into all_returns (customer_id, customer_email, return_date, return_reason) select customer_id, customer_email, return_date, return_reason from #stage_online_returns",
default_db="dev",
default_schema="public",
session_id="2323",
)
)
# We only have one create temp table, but the same insert command from multiple sessions.
# This should get ignored.
assert len(report.queries_with_non_authoritative_session) == 0
aggregator.add_observed_query(
ObservedQuery(
query="insert into all_returns (customer_id, customer_email, return_date, return_reason) select customer_id, customer_email, return_date, return_reason from #stage_online_returns",
default_db="dev",
default_schema="public",
session_id="5435",
)
)
assert len(report.queries_with_non_authoritative_session) == 1
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_overlapping_inserts_from_temp_tables.json",
)
@freeze_time(FROZEN_TIME)
def test_aggregate_operations() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=False,
generate_queries=True,
generate_usage_statistics=False,
generate_operations=True,
)
aggregator.add_observed_query(
ObservedQuery(
query="create table foo as select a, b from bar",
default_db="dev",
default_schema="public",
timestamp=_ts(20),
user=CorpUserUrn("user1"),
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create table foo as select a, b from bar",
default_db="dev",
default_schema="public",
timestamp=_ts(25),
user=CorpUserUrn("user2"),
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create table foo as select a, b+1 as b from bar",
default_db="dev",
default_schema="public",
timestamp=_ts(26),
user=CorpUserUrn("user3"),
)
)
# The first query will basically be ignored, as it's a duplicate of the second one.
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_aggregate_operations.json",
)
@freeze_time(FROZEN_TIME)
def test_view_lineage() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
query_log=QueryLogSetting.STORE_ALL,
)
aggregator.add_view_definition(
view_urn=DatasetUrn("redshift", "dev.public.foo"),
view_definition="create view foo as select a, b from bar",
default_db="dev",
default_schema="public",
)
aggregator._schema_resolver.add_raw_schema_info(
urn=DatasetUrn("redshift", "dev.public.foo").urn(),
schema_info={"a": "int", "b": "int"},
)
aggregator._schema_resolver.add_raw_schema_info(
urn=DatasetUrn("redshift", "dev.public.bar").urn(),
schema_info={"a": "int", "b": "int"},
)
# Because we have schema information, despite it being registered after the view definition,
# the confidence score should be high.
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_view_lineage.json",
)
@freeze_time(FROZEN_TIME)
def test_known_lineage_mapping() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator.add_known_lineage_mapping(
upstream_urn=DatasetUrn("redshift", "dev.public.bar").urn(),
downstream_urn=DatasetUrn("redshift", "dev.public.foo").urn(),
)
aggregator.add_known_lineage_mapping(
upstream_urn=DatasetUrn("s3", "bucket1/key1").urn(),
downstream_urn=DatasetUrn("redshift", "dev.public.bar").urn(),
)
aggregator.add_known_lineage_mapping(
upstream_urn=DatasetUrn("redshift", "dev.public.foo").urn(),
downstream_urn=DatasetUrn("s3", "bucket2/key2").urn(),
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_known_lineage_mapping.json",
)
@freeze_time(FROZEN_TIME)
def test_column_lineage_deduplication() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator.add_observed_query(
ObservedQuery(
query="/* query 1 */ insert into foo (a, b, c) select a, b, c from bar",
default_db="dev",
default_schema="public",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="/* query 2 */ insert into foo (a, b) select a, b from bar",
default_db="dev",
default_schema="public",
)
)
mcps = list(aggregator.gen_metadata())
# In this case, the lineage for a and b is attributed to query 2, and
# the lineage for c is attributed to query 1. Note that query 1 does
# not get any credit for a and b, as they are already covered by query 2,
# which came later and hence has higher precedence.
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_column_lineage_deduplication.json",
)
@freeze_time(FROZEN_TIME)
def test_add_known_query_lineage() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=True,
)
downstream_urn = DatasetUrn("redshift", "dev.public.foo").urn()
upstream_urn = DatasetUrn("redshift", "dev.public.bar").urn()
known_query_lineage = KnownQueryLineageInfo(
query_text="insert into foo (a, b, c) select a, b, c from bar",
downstream=downstream_urn,
upstreams=[upstream_urn],
column_lineage=[
ColumnLineageInfo(
downstream=DownstreamColumnRef(table=downstream_urn, column="a"),
upstreams=[ColumnRef(table=upstream_urn, column="a")],
),
ColumnLineageInfo(
downstream=DownstreamColumnRef(table=downstream_urn, column="b"),
upstreams=[ColumnRef(table=upstream_urn, column="b")],
),
ColumnLineageInfo(
downstream=DownstreamColumnRef(table=downstream_urn, column="c"),
upstreams=[ColumnRef(table=upstream_urn, column="c")],
),
],
timestamp=_ts(20),
query_type=QueryType.INSERT,
)
aggregator.add_known_query_lineage(known_query_lineage)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_add_known_query_lineage.json",
)
@freeze_time(FROZEN_TIME)
def test_table_rename() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator._schema_resolver.add_raw_schema_info(
DatasetUrn("redshift", "dev.public.foo").urn(),
{"a": "int", "b": "int", "c": "int"},
)
# Register that foo_staging is renamed to foo.
aggregator.add_table_rename(
TableRename(
original_urn=DatasetUrn("redshift", "dev.public.foo_staging").urn(),
new_urn=DatasetUrn("redshift", "dev.public.foo").urn(),
)
)
# Add an unrelated query.
aggregator.add_observed_query(
ObservedQuery(
query="create table bar as select a, b from baz",
default_db="dev",
default_schema="public",
)
)
# Add the query that created the staging table.
aggregator.add_observed_query(
ObservedQuery(
query="create table foo_staging as select a, b from foo_dep",
default_db="dev",
default_schema="public",
)
)
# Add the query that created the downstream from foo_staging table.
aggregator.add_observed_query(
ObservedQuery(
query="create table foo_downstream as select a, b from foo_staging",
default_db="dev",
default_schema="public",
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_table_rename.json",
)
@freeze_time(FROZEN_TIME)
def test_table_rename_with_temp() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
is_temp_table=lambda x: "staging" in x.lower(),
)
aggregator._schema_resolver.add_raw_schema_info(
DatasetUrn("redshift", "dev.public.foo").urn(),
{"a": "int", "b": "int", "c": "int"},
)
# Register that foo_staging is renamed to foo.
aggregator.add_table_rename(
TableRename(
original_urn=DatasetUrn("redshift", "dev.public.foo_staging").urn(),
new_urn=DatasetUrn("redshift", "dev.public.foo").urn(),
query="alter table dev.public.foo_staging rename to dev.public.foo",
)
)
# Add an unrelated query.
aggregator.add_observed_query(
ObservedQuery(
query="create table bar as select a, b from baz",
default_db="dev",
default_schema="public",
)
)
# Add the query that created the staging table.
aggregator.add_observed_query(
ObservedQuery(
query="create table foo_staging as select a, b from foo_dep",
default_db="dev",
default_schema="public",
)
)
# Add the query that created the downstream from foo_staging table.
aggregator.add_observed_query(
ObservedQuery(
query="create table foo_downstream as select a, b from foo_staging",
default_db="dev",
default_schema="public",
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_table_rename_with_temp.json",
)
@freeze_time(FROZEN_TIME)
def test_table_swap() -> None:
aggregator = SqlParsingAggregator(
platform="snowflake",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator._schema_resolver.add_raw_schema_info(
DatasetUrn("snowflake", "dev.public.person_info").urn(),
{"a": "int", "b": "int", "c": "int"},
)
# Add an unrelated query.
aggregator.add_observed_query(
ObservedQuery(
query="create table bar as select a, b from baz",
default_db="dev",
default_schema="public",
)
)
# Add the query that created the swap table initially.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="CREATE TABLE person_info_swap CLONE person_info;",
upstreams=[DatasetUrn("snowflake", "dev.public.person_info").urn()],
downstream=DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
)
)
# Add the query that created the incremental table.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="CREATE TABLE person_info_incremental AS SELECT * from person_info_dep;",
upstreams=[
DatasetUrn("snowflake", "dev.public.person_info_dep").urn(),
],
downstream=DatasetUrn(
"snowflake", "dev.public.person_info_incremental"
).urn(),
)
)
# Add the query that updated the swap table.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="INSERT INTO person_info_swap SELECT * from person_info_incremental;",
upstreams=[
DatasetUrn("snowflake", "dev.public.person_info_incremental").urn(),
],
downstream=DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
)
)
aggregator.add_table_swap(
TableSwap(
urn1=DatasetUrn("snowflake", "dev.public.person_info").urn(),
urn2=DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
)
)
# Add the query that is created from swap table.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="create table person_info_backup as select * from person_info_swap",
upstreams=[
DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
],
downstream=DatasetUrn("snowflake", "dev.public.person_info_backup").urn(),
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_table_swap.json",
)
@freeze_time(FROZEN_TIME)
def test_table_swap_with_temp() -> None:
aggregator = SqlParsingAggregator(
platform="snowflake",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
is_temp_table=lambda x: "swap" in x.lower() or "incremental" in x.lower(),
)
aggregator._schema_resolver.add_raw_schema_info(
DatasetUrn("snowflake", "dev.public.person_info").urn(),
{"a": "int", "b": "int", "c": "int"},
)
# Add an unrelated query.
aggregator.add_observed_query(
ObservedQuery(
query="create table bar as select a, b from baz",
default_db="dev",
default_schema="public",
)
)
# Add the query that created the swap table initially.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="CREATE TABLE person_info_swap CLONE person_info;",
upstreams=[DatasetUrn("snowflake", "dev.public.person_info").urn()],
downstream=DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
session_id="xxx",
timestamp=_ts(10),
column_lineage=[
ColumnLineageInfo(
downstream=DownstreamColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info_swap"
).urn(),
column="a",
),
upstreams=[
ColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info"
).urn(),
column="a",
)
],
)
],
)
)
# Add the query that created the incremental table.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="CREATE TABLE person_info_incremental AS SELECT * from person_info_dep;",
upstreams=[
DatasetUrn("snowflake", "dev.public.person_info_dep").urn(),
],
downstream=DatasetUrn(
"snowflake", "dev.public.person_info_incremental"
).urn(),
session_id="xxx",
timestamp=_ts(20),
column_lineage=[
ColumnLineageInfo(
downstream=DownstreamColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info_incremental"
).urn(),
column="a",
),
upstreams=[
ColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info_dep"
).urn(),
column="a",
)
],
)
],
)
)
# Add the query that updated the swap table.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="INSERT INTO person_info_swap SELECT * from person_info_incremental;",
upstreams=[
DatasetUrn("snowflake", "dev.public.person_info_incremental").urn(),
],
downstream=DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
session_id="xxx",
timestamp=_ts(30),
column_lineage=[
ColumnLineageInfo(
downstream=DownstreamColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info_swap"
).urn(),
column="a",
),
upstreams=[
ColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info_incremental"
).urn(),
column="a",
)
],
)
],
)
)
aggregator.add_table_swap(
TableSwap(
urn1=DatasetUrn("snowflake", "dev.public.person_info").urn(),
urn2=DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
session_id="xxx",
timestamp=_ts(40),
)
)
# Add the query that is created from swap table.
aggregator.add_preparsed_query(
PreparsedQuery(
query_id=None,
query_text="create table person_info_backup as select * from person_info_swap",
upstreams=[
DatasetUrn("snowflake", "dev.public.person_info_swap").urn(),
],
downstream=DatasetUrn("snowflake", "dev.public.person_info_backup").urn(),
session_id="xxx",
timestamp=_ts(50),
column_lineage=[
ColumnLineageInfo(
downstream=DownstreamColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info_backup"
).urn(),
column="a",
),
upstreams=[
ColumnRef(
table=DatasetUrn(
"snowflake", "dev.public.person_info_swap"
).urn(),
column="a",
)
],
)
],
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_table_swap_with_temp.json",
)
@freeze_time(FROZEN_TIME)
def test_create_table_query_mcps() -> None:
aggregator = SqlParsingAggregator(
platform="bigquery",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=True,
)
aggregator.add_observed_query(
ObservedQuery(
query="create or replace table `dataset.foo` (date_utc timestamp, revenue int);",
default_db="dev",
default_schema="public",
timestamp=datetime.now(),
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_create_table_query_mcps.json",
)
@freeze_time(FROZEN_TIME)
def test_table_lineage_via_temp_table_disordered_add() -> None:
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=True,
generate_usage_statistics=False,
generate_operations=False,
)
aggregator.add_observed_query(
ObservedQuery(
query="create table derived_from_foo as select * from foo",
default_db="dev",
default_schema="public",
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create temp table foo as select a, b+c as c from bar",
default_db="dev",
default_schema="public",
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR
/ "test_table_lineage_via_temp_table_disordered_add.json",
)
@freeze_time(FROZEN_TIME)
def test_basic_usage() -> None:
frozen_timestamp = parse_user_datetime(FROZEN_TIME)
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=False,
generate_usage_statistics=True,
generate_operations=False,
usage_config=BaseUsageConfig(
start_time=get_time_bucket(frozen_timestamp, BucketDuration.DAY),
end_time=frozen_timestamp,
),
)
aggregator._schema_resolver.add_raw_schema_info(
DatasetUrn("redshift", "dev.public.foo").urn(),
{"a": "int", "b": "int", "c": "int"},
)
aggregator.add_observed_query(
ObservedQuery(
query="select * from foo",
default_db="dev",
default_schema="public",
usage_multiplier=5,
timestamp=frozen_timestamp,
user=CorpUserUrn("user1"),
)
)
aggregator.add_observed_query(
ObservedQuery(
query="create table bar as select b+c as c from foo",
default_db="dev",
default_schema="public",
timestamp=frozen_timestamp,
user=CorpUserUrn("user2"),
)
)
mcps = list(aggregator.gen_metadata())
check_goldens_stream(
outputs=mcps,
golden_path=RESOURCE_DIR / "test_basic_usage.json",
)
def test_table_swap_id() -> None:
assert (
TableSwap(
urn1=DatasetUrn("snowflake", "dev.public.foo").urn(),
urn2=DatasetUrn("snowflake", "dev.public.foo_staging").urn(),
).id()
== TableSwap(
urn1=DatasetUrn("snowflake", "dev.public.foo_staging").urn(),
urn2=DatasetUrn("snowflake", "dev.public.foo").urn(),
).id()
)
def test_sql_aggreator_close_cleans_tmp(tmp_path):
frozen_timestamp = parse_user_datetime(FROZEN_TIME)
with patch("tempfile.tempdir", str(tmp_path)):
aggregator = SqlParsingAggregator(
platform="redshift",
generate_lineage=False,
generate_usage_statistics=True,
generate_operations=False,
usage_config=BaseUsageConfig(
start_time=get_time_bucket(frozen_timestamp, BucketDuration.DAY),
end_time=frozen_timestamp,
),
generate_queries=True,
generate_query_usage_statistics=True,
)
assert len(os.listdir(tmp_path)) > 0
aggregator.close()
assert len(os.listdir(tmp_path)) == 0