datahub/smoke-test/tests/patch/test_datajob_patches.py
david-leifker 9b0634805a
feat(ingestion-openapi): patch support (#13282)
Co-authored-by: Sergio Gómez Villamor <sgomezvillamor@gmail.com>
2025-04-25 13:54:28 -05:00

258 lines
8.7 KiB
Python

import time
import uuid
import pytest
import datahub.metadata.schema_classes as models
from datahub.emitter.mce_builder import make_data_job_urn, make_dataset_urn
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.metadata.schema_classes import (
DataJobInfoClass,
DataJobInputOutputClass,
EdgeClass,
)
from datahub.specific.datajob import DataJobPatchBuilder
from tests.patch.common_patch_tests import (
helper_test_custom_properties_patch,
helper_test_dataset_tags_patch,
helper_test_entity_terms_patch,
helper_test_ownership_patch,
)
def _make_test_datajob_urn(
seedFlow: str = "SampleAirflowDag", seedTask: str = "SampleAirflowTask"
):
return make_data_job_urn(
orchestrator="airflow",
flow_id=f"{seedFlow}{uuid.uuid4()}",
job_id=f"{seedTask}{uuid.uuid4()}",
)
# Common Aspect Patch Tests
# Ownership
@pytest.mark.parametrize(
"client_fixture_name", ["graph_client", "openapi_graph_client"]
)
def test_datajob_ownership_patch(request, client_fixture_name):
graph_client = request.getfixturevalue(client_fixture_name)
datajob_urn = _make_test_datajob_urn()
helper_test_ownership_patch(graph_client, datajob_urn, DataJobPatchBuilder)
# Tags
@pytest.mark.parametrize(
"client_fixture_name", ["graph_client", "openapi_graph_client"]
)
def test_datajob_tags_patch(request, client_fixture_name):
graph_client = request.getfixturevalue(client_fixture_name)
helper_test_dataset_tags_patch(
graph_client, _make_test_datajob_urn(), DataJobPatchBuilder
)
# Terms
@pytest.mark.parametrize(
"client_fixture_name", ["graph_client", "openapi_graph_client"]
)
def test_dataset_terms_patch(request, client_fixture_name):
graph_client = request.getfixturevalue(client_fixture_name)
helper_test_entity_terms_patch(
graph_client, _make_test_datajob_urn(), DataJobPatchBuilder
)
# Custom Properties
@pytest.mark.parametrize(
"client_fixture_name", ["graph_client", "openapi_graph_client"]
)
def test_custom_properties_patch(request, client_fixture_name):
graph_client = request.getfixturevalue(client_fixture_name)
orig_datajob_info = DataJobInfoClass(name="test_name", type="TestJobType")
helper_test_custom_properties_patch(
graph_client,
test_entity_urn=_make_test_datajob_urn(),
patch_builder_class=DataJobPatchBuilder,
custom_properties_aspect_class=DataJobInfoClass,
base_aspect=orig_datajob_info,
)
# Specific Aspect Patch Tests
# Input/Output
@pytest.mark.parametrize(
"client_fixture_name", ["graph_client", "openapi_graph_client"]
)
def test_datajob_inputoutput_dataset_patch(request, client_fixture_name):
graph_client = request.getfixturevalue(client_fixture_name)
datajob_urn = _make_test_datajob_urn()
other_dataset_urn = make_dataset_urn(
platform="hive", name=f"SampleHiveDataset2-{uuid.uuid4()}", env="PROD"
)
patch_dataset_urn = make_dataset_urn(
platform="hive", name=f"SampleHiveDataset3-{uuid.uuid4()}", env="PROD"
)
inputoutput_lineage = DataJobInputOutputClass(
inputDatasets=[],
outputDatasets=[],
inputDatasetEdges=[EdgeClass(destinationUrn=other_dataset_urn)],
)
dataset_input_lineage_to_add = EdgeClass(destinationUrn=patch_dataset_urn)
mcpw = MetadataChangeProposalWrapper(
entityUrn=datajob_urn, aspect=inputoutput_lineage
)
graph_client.emit_mcp(mcpw)
inputoutput_lineage_read = graph_client.get_aspect(
entity_urn=datajob_urn,
aspect_type=DataJobInputOutputClass,
)
assert inputoutput_lineage_read is not None
assert inputoutput_lineage_read.inputDatasetEdges is not None
assert (
inputoutput_lineage_read.inputDatasetEdges[0].destinationUrn
== other_dataset_urn
)
for patch_mcp in (
DataJobPatchBuilder(datajob_urn)
.add_input_dataset(dataset_input_lineage_to_add)
.build()
):
graph_client.emit_mcp(patch_mcp)
pass
inputoutput_lineage_read = graph_client.get_aspect(
entity_urn=datajob_urn,
aspect_type=DataJobInputOutputClass,
)
assert inputoutput_lineage_read is not None
assert inputoutput_lineage_read.inputDatasetEdges is not None
assert len(inputoutput_lineage_read.inputDatasetEdges) == 2
assert (
inputoutput_lineage_read.inputDatasetEdges[0].destinationUrn
== other_dataset_urn
)
assert (
inputoutput_lineage_read.inputDatasetEdges[1].destinationUrn
== patch_dataset_urn
)
for patch_mcp in (
DataJobPatchBuilder(datajob_urn).remove_input_dataset(patch_dataset_urn).build()
):
graph_client.emit_mcp(patch_mcp)
pass
inputoutput_lineage_read = graph_client.get_aspect(
entity_urn=datajob_urn,
aspect_type=DataJobInputOutputClass,
)
assert inputoutput_lineage_read is not None
assert inputoutput_lineage_read.inputDatasetEdges is not None
assert len(inputoutput_lineage_read.inputDatasetEdges) == 1
assert (
inputoutput_lineage_read.inputDatasetEdges[0].destinationUrn
== other_dataset_urn
)
@pytest.mark.parametrize(
"client_fixture_name", ["graph_client", "openapi_graph_client"]
)
def test_datajob_multiple_inputoutput_dataset_patch(request, client_fixture_name):
graph_client = request.getfixturevalue(client_fixture_name)
"""Test creating a data job with multiple input and output datasets and verifying the aspects."""
# Create the data job
datajob_urn = "urn:li:dataJob:(urn:li:dataFlow:(airflow,training,default),training)"
# Create input and output dataset URNs
input_datasets = ["input_data_1", "input_data_2"]
output_datasets = ["output_data_1", "output_data_2"]
input_dataset_urns = [
make_dataset_urn(platform="s3", name=f"test_patch_{dataset}", env="PROD")
for dataset in input_datasets
]
output_dataset_urns = [
make_dataset_urn(platform="s3", name=f"test_patch_{dataset}", env="PROD")
for dataset in output_datasets
]
# Create edges for datasets
def make_edge(urn, generate_auditstamp=False):
audit_stamp = models.AuditStampClass(
time=int(time.time() * 1000.0),
actor="urn:li:corpuser:datahub",
)
return EdgeClass(
destinationUrn=str(urn),
lastModified=audit_stamp if generate_auditstamp else None,
)
# Initialize empty input/output lineage
initial_lineage = DataJobInputOutputClass(
inputDatasets=[], outputDatasets=[], inputDatasetEdges=[], outputDatasetEdges=[]
)
# Emit initial lineage
mcpw = MetadataChangeProposalWrapper(entityUrn=datajob_urn, aspect=initial_lineage)
graph_client.emit_mcp(mcpw)
# Create patches for input and output datasets
patch_builder = DataJobPatchBuilder(datajob_urn)
for input_urn in input_dataset_urns:
patch_builder.add_input_dataset(make_edge(input_urn))
for output_urn in output_dataset_urns:
patch_builder.add_output_dataset(make_edge(output_urn))
# Apply patches
for patch_mcp in patch_builder.build():
graph_client.emit_mcp(patch_mcp)
# Verify the lineage was correctly applied
lineage_aspect = graph_client.get_aspect(
entity_urn=datajob_urn,
aspect_type=DataJobInputOutputClass,
)
# Assert lineage was created
assert lineage_aspect is not None
assert lineage_aspect.inputDatasetEdges is not None
assert lineage_aspect.outputDatasetEdges is not None
# Verify input datasets
assert len(lineage_aspect.inputDatasetEdges) == len(input_datasets)
input_urns = {edge.destinationUrn for edge in lineage_aspect.inputDatasetEdges}
expected_input_urns = {str(urn) for urn in input_dataset_urns}
assert input_urns == expected_input_urns
# Verify output datasets
assert len(lineage_aspect.outputDatasetEdges) == len(output_datasets)
output_urns = {edge.destinationUrn for edge in lineage_aspect.outputDatasetEdges}
expected_output_urns = {str(urn) for urn in output_dataset_urns}
assert output_urns == expected_output_urns
# Test updating the same datasets again (idempotency)
patch_builder = DataJobPatchBuilder(datajob_urn)
for input_urn in input_dataset_urns:
patch_builder.add_input_dataset(make_edge(input_urn))
for output_urn in output_dataset_urns:
patch_builder.add_output_dataset(make_edge(output_urn))
for patch_mcp in patch_builder.build():
graph_client.emit_mcp(patch_mcp)
# Verify the aspect hasn't changed
updated_lineage_aspect = graph_client.get_aspect(
entity_urn=datajob_urn,
aspect_type=DataJobInputOutputClass,
)
assert updated_lineage_aspect is not None
assert updated_lineage_aspect.to_obj() == lineage_aspect.to_obj()