datahub/metadata-ingestion/examples/library/lineage_dataset_job_dataset.py

46 lines
1.5 KiB
Python

from typing import List
import datahub.emitter.mce_builder as builder
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.metadata.com.linkedin.pegasus2avro.datajob import DataJobInputOutputClass
# Construct the DataJobInputOutput aspect.
input_datasets: List[str] = [
builder.make_dataset_urn(platform="mysql", name="librarydb.member", env="PROD"),
builder.make_dataset_urn(platform="mysql", name="librarydb.checkout", env="PROD"),
]
output_datasets: List[str] = [
builder.make_dataset_urn(
platform="kafka", name="debezium.topics.librarydb.member_checkout", env="PROD"
)
]
input_data_jobs: List[str] = [
builder.make_data_job_urn(
orchestrator="airflow", flow_id="flow1", job_id="job0", cluster="PROD"
)
]
datajob_input_output = DataJobInputOutputClass(
inputDatasets=input_datasets,
outputDatasets=output_datasets,
inputDatajobs=input_data_jobs,
)
# Construct a MetadataChangeProposalWrapper object.
# NOTE: This will overwrite all of the existing lineage information associated with this job.
datajob_input_output_mcp = MetadataChangeProposalWrapper(
entityUrn=builder.make_data_job_urn(
orchestrator="airflow", flow_id="flow1", job_id="job1", cluster="PROD"
),
aspect=datajob_input_output,
)
# Create an emitter to the GMS REST API.
emitter = DatahubRestEmitter("http://localhost:8080")
# Emit metadata!
emitter.emit_mcp(datajob_input_output_mcp)