49 lines
1.3 KiB
Python

import datahub.metadata.schema_classes as models
from datahub.metadata.urns import MlFeatureUrn, MlModelGroupUrn
from datahub.sdk import DataHubClient
from datahub.sdk.mlmodel import MLModel
client = DataHubClient.from_env()
mlmodel = MLModel(
id="my-recommendations-model",
name="My Recommendations Model",
platform="mlflow",
model_group=MlModelGroupUrn(
platform="mlflow", name="my-recommendations-model-group"
),
custom_properties={
"framework": "pytorch",
},
extra_aspects=[
models.MLModelPropertiesClass(
mlFeatures=[
str(
MlFeatureUrn(
feature_namespace="users_feature_table", name="user_signup_date"
)
),
str(
MlFeatureUrn(
feature_namespace="users_feature_table",
name="user_last_active_date",
)
),
]
)
],
training_metrics={
"accuracy": "1.0",
"precision": "0.95",
"recall": "0.90",
"f1_score": "0.92",
},
hyper_params={
"learning_rate": "0.01",
"num_epochs": "100",
"batch_size": "32",
},
)
client.entities.update(mlmodel)