datahub/metadata-ingestion/examples/library/data_process_instance_create_simple.py

79 lines
2.4 KiB
Python

import os
import time
from datahub.api.entities.dataprocess.dataprocess_instance import (
DataProcessInstance,
InstanceRunResult,
)
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.metadata.schema_classes import DataProcessTypeClass
from datahub.utilities.urns.data_job_urn import DataJobUrn
from datahub.utilities.urns.dataset_urn import DatasetUrn
# Create REST emitter
emitter = DatahubRestEmitter(
gms_server=os.getenv("DATAHUB_GMS_URL", "http://localhost:8080"),
token=os.getenv("DATAHUB_GMS_TOKEN"),
)
# Define the parent DataJob that this instance is executing
parent_job_urn = DataJobUrn.create_from_string(
"urn:li:dataJob:(urn:li:dataFlow:(airflow,sales_pipeline,prod),process_sales_data)"
)
# Create a process instance for a specific execution
# This might represent an Airflow task run on 2024-01-15 at 10:00:00
instance = DataProcessInstance(
id="scheduled__2024-01-15T10:00:00+00:00",
orchestrator="airflow",
cluster="prod",
template_urn=parent_job_urn,
type=DataProcessTypeClass.BATCH_SCHEDULED,
properties={
"airflow_version": "2.7.0",
"executor": "CeleryExecutor",
"pool": "default_pool",
},
url="https://airflow.company.com/dags/sales_pipeline/grid?dag_run_id=scheduled__2024-01-15T10:00:00+00:00&task_id=process_sales_data",
inlets=[
DatasetUrn.create_from_string(
"urn:li:dataset:(urn:li:dataPlatform:postgres,sales_db.raw_orders,PROD)"
)
],
outlets=[
DatasetUrn.create_from_string(
"urn:li:dataset:(urn:li:dataPlatform:postgres,sales_db.processed_orders,PROD)"
)
],
)
# Record the start of execution
start_time = int(time.time() * 1000)
instance.emit_process_start(
emitter=emitter,
start_timestamp_millis=start_time,
attempt=1,
emit_template=True,
materialize_iolets=True,
)
print(f"Started tracking process instance: {instance.urn}")
# Simulate process execution
print("Process is running...")
time.sleep(2)
# Record the end of execution
end_time = int(time.time() * 1000)
instance.emit_process_end(
emitter=emitter,
end_timestamp_millis=end_time,
result=InstanceRunResult.SUCCESS,
result_type="airflow",
attempt=1,
start_timestamp_millis=start_time,
)
print("Completed tracking process instance with result: SUCCESS")
print(f"Duration: {end_time - start_time}ms")