mirror of
https://github.com/datahub-project/datahub.git
synced 2025-07-07 17:23:11 +00:00
160 lines
5.4 KiB
Python
160 lines
5.4 KiB
Python
import re
|
|
import subprocess
|
|
|
|
import pytest
|
|
from freezegun import freeze_time
|
|
|
|
from datahub.ingestion.run.pipeline import Pipeline
|
|
from tests.test_helpers import mce_helpers
|
|
from tests.test_helpers.docker_helpers import wait_for_port
|
|
|
|
FROZEN_TIME = "2020-04-14 07:00:00"
|
|
|
|
data_platform = "hive"
|
|
|
|
pytestmark = pytest.mark.integration_batch_1
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def hive_runner(docker_compose_runner, pytestconfig):
|
|
test_resources_dir = pytestconfig.rootpath / "tests/integration/hive"
|
|
with docker_compose_runner(
|
|
test_resources_dir / "docker-compose.yml", "hive"
|
|
) as docker_services:
|
|
wait_for_port(docker_services, "testhiveserver2", 10000, timeout=120)
|
|
yield docker_services
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def test_resources_dir(pytestconfig):
|
|
return pytestconfig.rootpath / "tests/integration/hive"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def loaded_hive(hive_runner):
|
|
# Set up the container.
|
|
command = "docker exec testhiveserver2 /opt/hive/bin/beeline -u jdbc:hive2://localhost:10000 -f /hive_setup.sql"
|
|
subprocess.run(command, shell=True, check=True)
|
|
|
|
|
|
def base_pipeline_config(events_file, db=None):
|
|
return {
|
|
"run_id": "hive-test",
|
|
"source": {
|
|
"type": data_platform,
|
|
"config": {
|
|
"scheme": "hive",
|
|
"database": db,
|
|
"host_port": "localhost:10000",
|
|
},
|
|
},
|
|
"sink": {
|
|
"type": "file",
|
|
"config": {"filename": str(events_file)},
|
|
},
|
|
}
|
|
|
|
|
|
@freeze_time(FROZEN_TIME)
|
|
def test_hive_ingest(
|
|
loaded_hive, pytestconfig, test_resources_dir, tmp_path, mock_time
|
|
):
|
|
mce_out_file = "test_hive_ingest.json"
|
|
events_file = tmp_path / mce_out_file
|
|
|
|
# Run the metadata ingestion pipeline.
|
|
pipeline = Pipeline.create(base_pipeline_config(events_file, "db1"))
|
|
pipeline.run()
|
|
pipeline.pretty_print_summary()
|
|
pipeline.raise_from_status(raise_warnings=True)
|
|
|
|
# Verify the output.
|
|
mce_helpers.check_golden_file(
|
|
pytestconfig,
|
|
output_path=events_file,
|
|
golden_path=test_resources_dir / "hive_mces_golden.json",
|
|
ignore_paths=[
|
|
r"root\[\d+\]\['proposedSnapshot'\]\['com\.linkedin\.pegasus2avro\.metadata\.snapshot\.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com\.linkedin\.pegasus2avro\.dataset\.DatasetProperties'\]\['customProperties'\]\['.*Time.*'\]",
|
|
r"root\[6\]\['proposedSnapshot'\]\['com.linkedin.pegasus2avro.metadata.snapshot.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com.linkedin.pegasus2avro.schema.SchemaMetadata'\]\['fields'\]\[\d+\]\['nativeDataType'\]",
|
|
],
|
|
)
|
|
|
|
# Limitation - native data types for union does not show up as expected
|
|
|
|
|
|
@freeze_time(FROZEN_TIME)
|
|
@pytest.mark.integration_batch_1
|
|
def test_hive_ingest_all_db(
|
|
loaded_hive, pytestconfig, test_resources_dir, tmp_path, mock_time
|
|
):
|
|
mce_out_file = "test_hive_ingest.json"
|
|
events_file = tmp_path / mce_out_file
|
|
|
|
# Run the metadata ingestion pipeline.
|
|
pipeline = Pipeline.create(base_pipeline_config(events_file))
|
|
pipeline.run()
|
|
pipeline.pretty_print_summary()
|
|
pipeline.raise_from_status(raise_warnings=True)
|
|
|
|
# Verify the output.
|
|
mce_helpers.check_golden_file(
|
|
pytestconfig,
|
|
output_path=events_file,
|
|
golden_path=test_resources_dir / "hive_mces_all_db_golden.json",
|
|
ignore_paths=[
|
|
r"root\[\d+\]\['proposedSnapshot'\]\['com\.linkedin\.pegasus2avro\.metadata\.snapshot\.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com\.linkedin\.pegasus2avro\.dataset\.DatasetProperties'\]\['customProperties'\]\['.*Time.*'\]",
|
|
r"root\[6\]\['proposedSnapshot'\]\['com.linkedin.pegasus2avro.metadata.snapshot.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com.linkedin.pegasus2avro.schema.SchemaMetadata'\]\['fields'\]\[\d+\]\['nativeDataType'\]",
|
|
],
|
|
)
|
|
|
|
# Limitation - native data types for union does not show up as expected
|
|
|
|
|
|
@freeze_time(FROZEN_TIME)
|
|
def test_hive_instance_check(loaded_hive, test_resources_dir, tmp_path, pytestconfig):
|
|
instance: str = "production_warehouse"
|
|
|
|
# Run the metadata ingestion pipeline.
|
|
mce_out_file = "test_hive_instance.json"
|
|
events_file = tmp_path / mce_out_file
|
|
|
|
pipeline_config = base_pipeline_config(events_file, "db1")
|
|
pipeline_config["source"]["config"]["platform_instance"] = instance
|
|
|
|
pipeline = Pipeline.create(pipeline_config)
|
|
pipeline.run()
|
|
pipeline.pretty_print_summary()
|
|
pipeline.raise_from_status(raise_warnings=True)
|
|
|
|
# Assert that all events generated have instance specific urns
|
|
urn_pattern = "^" + re.escape(
|
|
f"urn:li:dataset:(urn:li:dataPlatform:{data_platform},{instance}."
|
|
)
|
|
mce_helpers.assert_mce_entity_urn(
|
|
"ALL",
|
|
entity_type="dataset",
|
|
regex_pattern=urn_pattern,
|
|
file=events_file,
|
|
)
|
|
|
|
mce_helpers.assert_mcp_entity_urn(
|
|
"ALL",
|
|
entity_type="dataset",
|
|
regex_pattern=urn_pattern,
|
|
file=events_file,
|
|
)
|
|
|
|
# all dataset entities emitted must have a dataPlatformInstance aspect emitted
|
|
# there must be at least one entity emitted
|
|
assert (
|
|
mce_helpers.assert_for_each_entity(
|
|
entity_type="dataset",
|
|
aspect_name="dataPlatformInstance",
|
|
aspect_field_matcher={
|
|
"instance": f"urn:li:dataPlatformInstance:(urn:li:dataPlatform:{data_platform},{instance})"
|
|
},
|
|
file=events_file,
|
|
)
|
|
>= 1
|
|
)
|