mirror of
https://github.com/datahub-project/datahub.git
synced 2025-07-24 18:10:11 +00:00
414 lines
13 KiB
Python
414 lines
13 KiB
Python
# Copyright 2021 Acryl Data, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import logging
|
|
import urllib.parse
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
from datahub.configuration.common import OperationalError
|
|
from datahub.ingestion.graph.client import DataHubGraph
|
|
from datahub.metadata.schema_classes import (
|
|
GlossaryTermAssociationClass,
|
|
TagAssociationClass,
|
|
)
|
|
from datahub.specific.dataset import DatasetPatchBuilder
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
@dataclass
|
|
class AcrylDataHubGraph:
|
|
def __init__(self, baseGraph: DataHubGraph):
|
|
self.graph = baseGraph
|
|
|
|
def get_by_query(
|
|
self,
|
|
query: str,
|
|
entity: str,
|
|
start: int = 0,
|
|
count: int = 100,
|
|
filters: Optional[Dict] = None,
|
|
) -> List[Dict]:
|
|
url_frag = "/entities?action=search"
|
|
url = f"{self.graph._gms_server}{url_frag}"
|
|
payload = {"input": query, "start": start, "count": count, "entity": entity}
|
|
if filters is not None:
|
|
payload["filter"] = filters
|
|
|
|
headers = {
|
|
"X-RestLi-Protocol-Version": "2.0.0",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
try:
|
|
response = self.graph._session.post(
|
|
url, data=json.dumps(payload), headers=headers
|
|
)
|
|
if response.status_code != 200:
|
|
return []
|
|
json_resp = response.json()
|
|
return json_resp.get("value", {}).get("entities")
|
|
except Exception as e:
|
|
print(e)
|
|
return []
|
|
|
|
def get_by_graphql_query(self, query: Dict) -> Dict:
|
|
url_frag = "/api/graphql"
|
|
url = f"{self.graph._gms_server}{url_frag}"
|
|
|
|
headers = {
|
|
"X-DataHub-Actor": "urn:li:corpuser:admin",
|
|
"Content-Type": "application/json",
|
|
}
|
|
try:
|
|
response = self.graph._session.post(
|
|
url, data=json.dumps(query), headers=headers
|
|
)
|
|
if response.status_code != 200:
|
|
return {}
|
|
json_resp = response.json()
|
|
return json_resp.get("data", {})
|
|
except Exception as e:
|
|
print(e)
|
|
return {}
|
|
|
|
def query_constraints_for_dataset(self, dataset_id: str) -> List:
|
|
resp = self.get_by_graphql_query(
|
|
{
|
|
"query": """
|
|
query dataset($input: String!) {
|
|
dataset(urn: $input) {
|
|
constraints {
|
|
type
|
|
displayName
|
|
description
|
|
params {
|
|
hasGlossaryTermInNodeParams {
|
|
nodeName
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
""",
|
|
"variables": {"input": dataset_id},
|
|
}
|
|
)
|
|
constraints: List = resp.get("dataset", {}).get("constraints", [])
|
|
return constraints
|
|
|
|
def query_execution_result_details(self, execution_id: str) -> Any:
|
|
resp = self.get_by_graphql_query(
|
|
{
|
|
"query": """
|
|
query executionRequest($urn: String!) {
|
|
executionRequest(urn: $urn) {
|
|
input {
|
|
task
|
|
arguments {
|
|
key
|
|
value
|
|
}
|
|
}
|
|
}
|
|
}
|
|
""",
|
|
"variables": {"urn": f"urn:li:dataHubExecutionRequest:{execution_id}"},
|
|
}
|
|
)
|
|
return resp.get("executionRequest", {}).get("input", {})
|
|
|
|
def query_ingestion_sources(self) -> List:
|
|
sources = []
|
|
start, count = 0, 10
|
|
while True:
|
|
resp = self.get_by_graphql_query(
|
|
{
|
|
"query": """
|
|
query listIngestionSources($input: ListIngestionSourcesInput!, $execution_start: Int!, $execution_count: Int!) {
|
|
listIngestionSources(input: $input) {
|
|
start
|
|
count
|
|
total
|
|
ingestionSources {
|
|
urn
|
|
type
|
|
name
|
|
executions(start: $execution_start, count: $execution_count) {
|
|
start
|
|
count
|
|
total
|
|
executionRequests {
|
|
urn
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
""",
|
|
"variables": {
|
|
"input": {"start": start, "count": count},
|
|
"execution_start": 0,
|
|
"execution_count": 10,
|
|
},
|
|
}
|
|
)
|
|
listIngestionSources = resp.get("listIngestionSources", {})
|
|
sources.extend(listIngestionSources.get("ingestionSources", []))
|
|
|
|
cur_total = listIngestionSources.get("total", 0)
|
|
if cur_total > count:
|
|
start += count
|
|
else:
|
|
break
|
|
return sources
|
|
|
|
def get_downstreams(
|
|
self, entity_urn: str, max_downstreams: int = 3000
|
|
) -> List[str]:
|
|
start = 0
|
|
count_per_page = 1000
|
|
entities = []
|
|
done = False
|
|
total_downstreams = 0
|
|
while not done:
|
|
# if start > 0:
|
|
# breakpoint()
|
|
url_frag = f"/relationships?direction=INCOMING&types=List(DownstreamOf)&urn={urllib.parse.quote(entity_urn)}&count={count_per_page}&start={start}"
|
|
url = f"{self.graph._gms_server}{url_frag}"
|
|
response = self.graph._get_generic(url)
|
|
if response["count"] > 0:
|
|
relnships = response["relationships"]
|
|
entities.extend([x["entity"] for x in relnships])
|
|
start += count_per_page
|
|
total_downstreams += response["count"]
|
|
if start >= response["total"] or total_downstreams >= max_downstreams:
|
|
done = True
|
|
else:
|
|
done = True
|
|
return entities
|
|
|
|
def get_upstreams(self, entity_urn: str, max_upstreams: int = 3000) -> List[str]:
|
|
start = 0
|
|
count_per_page = 100
|
|
entities = []
|
|
done = False
|
|
total_upstreams = 0
|
|
while not done:
|
|
url_frag = f"/relationships?direction=OUTGOING&types=List(DownstreamOf)&urn={urllib.parse.quote(entity_urn)}&count={count_per_page}&start={start}"
|
|
url = f"{self.graph._gms_server}{url_frag}"
|
|
response = self.graph._get_generic(url)
|
|
if response["count"] > 0:
|
|
relnships = response["relationships"]
|
|
entities.extend([x["entity"] for x in relnships])
|
|
start += count_per_page
|
|
total_upstreams += response["count"]
|
|
if start >= response["total"] or total_upstreams >= max_upstreams:
|
|
done = True
|
|
else:
|
|
done = True
|
|
return entities
|
|
|
|
def get_relationships(
|
|
self, entity_urn: str, direction: str, relationship_types: List[str]
|
|
) -> List[str]:
|
|
url_frag = (
|
|
f"/relationships?"
|
|
f"direction={direction}"
|
|
f"&types=List({','.join(relationship_types)})"
|
|
f"&urn={urllib.parse.quote(entity_urn)}"
|
|
)
|
|
|
|
url = f"{self.graph._gms_server}{url_frag}"
|
|
response = self.graph._get_generic(url)
|
|
if response["count"] > 0:
|
|
relnships = response["relationships"]
|
|
entities = [x["entity"] for x in relnships]
|
|
return entities
|
|
return []
|
|
|
|
def check_relationship(self, entity_urn, target_urn, relationship_type):
|
|
url_frag = f"/relationships?direction=INCOMING&types=List({relationship_type})&urn={urllib.parse.quote(entity_urn)}"
|
|
url = f"{self.graph._gms_server}{url_frag}"
|
|
response = self.graph._get_generic(url)
|
|
if response["count"] > 0:
|
|
relnships = response["relationships"]
|
|
entities = [x["entity"] for x in relnships]
|
|
return target_urn in entities
|
|
return False
|
|
|
|
def add_tags_to_dataset(
|
|
self,
|
|
entity_urn: str,
|
|
dataset_tags: List[str],
|
|
field_tags: Optional[Dict] = None,
|
|
context: Optional[Dict] = None,
|
|
) -> None:
|
|
if field_tags is None:
|
|
field_tags = {}
|
|
dataset = DatasetPatchBuilder(entity_urn)
|
|
for t in dataset_tags:
|
|
dataset.add_tag(
|
|
tag=TagAssociationClass(
|
|
tag=t, context=json.dumps(context) if context else None
|
|
)
|
|
)
|
|
|
|
for field_path, tags in field_tags.items():
|
|
field_builder = dataset.for_field(field_path=field_path)
|
|
for tag in tags:
|
|
field_builder.add_tag(
|
|
tag=TagAssociationClass(
|
|
tag=tag, context=json.dumps(context) if context else None
|
|
)
|
|
)
|
|
|
|
for mcp in dataset.build():
|
|
self.graph.emit(mcp)
|
|
|
|
def add_terms_to_dataset(
|
|
self,
|
|
entity_urn: str,
|
|
dataset_terms: List[str],
|
|
field_terms: Optional[Dict] = None,
|
|
context: Optional[Dict] = None,
|
|
) -> None:
|
|
if field_terms is None:
|
|
field_terms = {}
|
|
|
|
dataset = DatasetPatchBuilder(urn=entity_urn)
|
|
|
|
for term in dataset_terms:
|
|
dataset.add_term(
|
|
GlossaryTermAssociationClass(
|
|
term, context=json.dumps(context) if context else None
|
|
)
|
|
)
|
|
|
|
for field_path, terms in field_terms.items():
|
|
field_builder = dataset.for_field(field_path=field_path)
|
|
for term in terms:
|
|
field_builder.add_term(
|
|
GlossaryTermAssociationClass(
|
|
term, context=json.dumps(context) if context else None
|
|
)
|
|
)
|
|
|
|
for mcp in dataset.build():
|
|
self.graph.emit(mcp)
|
|
|
|
def get_corpuser_info(self, urn: str) -> Any:
|
|
return self.get_untyped_aspect(
|
|
urn, "corpUserInfo", "com.linkedin.identity.CorpUserInfo"
|
|
)
|
|
|
|
def get_untyped_aspect(
|
|
self,
|
|
entity_urn: str,
|
|
aspect: str,
|
|
aspect_type_name: str,
|
|
) -> Any:
|
|
url = f"{self.graph._gms_server}/aspects/{urllib.parse.quote(entity_urn)}?aspect={aspect}&version=0"
|
|
response = self.graph._session.get(url)
|
|
if response.status_code == 404:
|
|
# not found
|
|
return None
|
|
response.raise_for_status()
|
|
response_json = response.json()
|
|
aspect_json = response_json.get("aspect", {}).get(aspect_type_name)
|
|
if aspect_json:
|
|
return aspect_json
|
|
else:
|
|
raise OperationalError(
|
|
f"Failed to find {aspect_type_name} in response {response_json}"
|
|
)
|
|
|
|
def _get_entity_by_name(
|
|
self,
|
|
name: str,
|
|
entity_type: str,
|
|
indexed_fields: Optional[List[str]] = None,
|
|
) -> Optional[str]:
|
|
"""Retrieve an entity urn based on its name and type. Returns None if there is no match found"""
|
|
if indexed_fields is None:
|
|
indexed_fields = ["name", "displayName"]
|
|
|
|
filters = []
|
|
if len(indexed_fields) > 1:
|
|
for indexed_field in indexed_fields:
|
|
filter_criteria = [
|
|
{
|
|
"field": indexed_field,
|
|
"value": name,
|
|
"condition": "EQUAL",
|
|
}
|
|
]
|
|
filters.append({"and": filter_criteria})
|
|
search_body = {
|
|
"input": "*",
|
|
"entity": entity_type,
|
|
"start": 0,
|
|
"count": 10,
|
|
"orFilters": [filters],
|
|
}
|
|
else:
|
|
search_body = {
|
|
"input": "*",
|
|
"entity": entity_type,
|
|
"start": 0,
|
|
"count": 10,
|
|
"filter": {
|
|
"or": [
|
|
{
|
|
"and": [
|
|
{
|
|
"field": indexed_fields[0],
|
|
"value": name,
|
|
"condition": "EQUAL",
|
|
}
|
|
]
|
|
}
|
|
]
|
|
},
|
|
}
|
|
results: Dict = self.graph._post_generic(
|
|
self.graph._search_endpoint, search_body
|
|
)
|
|
num_entities = results.get("value", {}).get("numEntities", 0)
|
|
if num_entities > 1:
|
|
logger.warning(
|
|
f"Got {num_entities} results for {entity_type} {name}. Will return the first match."
|
|
)
|
|
entities_yielded: int = 0
|
|
entities = []
|
|
for x in results["value"]["entities"]:
|
|
entities_yielded += 1
|
|
logger.debug(f"yielding {x['entity']}")
|
|
entities.append(x["entity"])
|
|
return entities[0] if entities_yielded else None
|
|
|
|
def get_glossary_term_urn_by_name(self, term_name: str) -> Optional[str]:
|
|
"""Retrieve a glossary term urn based on its name. Returns None if there is no match found"""
|
|
|
|
return self._get_entity_by_name(
|
|
term_name, "glossaryTerm", indexed_fields=["name"]
|
|
)
|
|
|
|
def get_glossary_node_urn_by_name(self, node_name: str) -> Optional[str]:
|
|
"""Retrieve a glossary node urn based on its name. Returns None if there is no match found"""
|
|
|
|
return self._get_entity_by_name(node_name, "glossaryNode")
|