mirror of
https://github.com/datahub-project/datahub.git
synced 2025-12-04 06:33:05 +00:00
* feat(metadata ingestion source): add presto-on-hive metadata ingestion source Co-authored-by: Houren Chen <houren.chen@grabtaxi.com> Co-authored-by: Ravindra Lanka <rlanka@acryl.io>
188 lines
6.9 KiB
Python
188 lines
6.9 KiB
Python
import re
|
|
import subprocess
|
|
import sys
|
|
|
|
import pytest
|
|
import requests
|
|
from freezegun import freeze_time
|
|
|
|
from datahub.configuration.common import AllowDenyPattern
|
|
from datahub.ingestion.run.pipeline import Pipeline
|
|
from datahub.ingestion.sink.file import FileSinkConfig
|
|
from datahub.ingestion.source.sql.presto_on_hive import PrestoOnHiveConfig
|
|
from tests.test_helpers import fs_helpers, mce_helpers
|
|
from tests.test_helpers.docker_helpers import wait_for_port
|
|
|
|
FROZEN_TIME = "2021-09-23 12:00:00"
|
|
|
|
data_platform = "presto-on-hive"
|
|
|
|
|
|
@pytest.mark.skipif(
|
|
sys.version_info < (3, 7), reason="presto-on-hive requires Python 3.7+"
|
|
)
|
|
@pytest.fixture(scope="module")
|
|
def presto_on_hive_runner(docker_compose_runner, pytestconfig):
|
|
test_resources_dir = pytestconfig.rootpath / "tests/integration/presto-on-hive"
|
|
with docker_compose_runner(
|
|
test_resources_dir / "docker-compose.yml", "presto-on-hive"
|
|
) as docker_services:
|
|
wait_for_port(docker_services, "presto", 8080)
|
|
wait_for_port(docker_services, "hiveserver2", 10000, timeout=120)
|
|
docker_services.wait_until_responsive(
|
|
timeout=30,
|
|
pause=1,
|
|
check=lambda: requests.get("http://localhost:5300/v1/info").json()[
|
|
"starting"
|
|
]
|
|
is False,
|
|
)
|
|
|
|
yield docker_services
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def test_resources_dir(pytestconfig):
|
|
return pytestconfig.rootpath / "tests/integration/presto-on-hive"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def loaded_presto_on_hive(presto_on_hive_runner):
|
|
# Set up the container.
|
|
command = "docker exec hiveserver2 /opt/hive/bin/beeline -u jdbc:hive2://localhost:10000 -f /hive_setup.sql"
|
|
subprocess.run(command, shell=True, check=True)
|
|
|
|
|
|
@freeze_time(FROZEN_TIME)
|
|
@pytest.mark.integration
|
|
def test_presto_on_hive_ingest(
|
|
loaded_presto_on_hive, test_resources_dir, pytestconfig, tmp_path, mock_time
|
|
):
|
|
|
|
# Run the metadata ingestion pipeline.
|
|
with fs_helpers.isolated_filesystem(tmp_path):
|
|
|
|
# Run the metadata ingestion pipeline for presto catalog referring to postgres database
|
|
mce_out_file = "presto_on_hive_mces.json"
|
|
events_file = tmp_path / mce_out_file
|
|
|
|
pipeline_config = {
|
|
"run_id": "presto-on-hive-test",
|
|
"source": {
|
|
"type": data_platform,
|
|
"config": PrestoOnHiveConfig(
|
|
host_port="localhost:5432",
|
|
database="metastore",
|
|
database_alias="hive",
|
|
username="postgres",
|
|
scheme="postgresql+psycopg2",
|
|
include_views=True,
|
|
include_tables=True,
|
|
schema_pattern=AllowDenyPattern(allow=["^public"]),
|
|
).dict(),
|
|
},
|
|
"sink": {
|
|
"type": "file",
|
|
"config": FileSinkConfig(filename=str(events_file)).dict(),
|
|
},
|
|
}
|
|
|
|
# Run the metadata ingestion pipeline.
|
|
pipeline = Pipeline.create(pipeline_config)
|
|
pipeline.run()
|
|
pipeline.pretty_print_summary()
|
|
pipeline.raise_from_status(raise_warnings=True)
|
|
|
|
# Run the metadata ingestion pipeline for presto catalog referring to hive database
|
|
# config_file = (test_resources_dir / "presto_on_hive_to_file.yml").resolve()
|
|
# run_datahub_cmd(["ingest", "-c", f"{config_file}"])
|
|
|
|
# Verify the output.
|
|
mce_helpers.check_golden_file(
|
|
pytestconfig,
|
|
output_path="presto_on_hive_mces.json",
|
|
golden_path=test_resources_dir / "presto_on_hive_mces_golden.json",
|
|
ignore_paths=[
|
|
r"root\[\d+\]\['proposedSnapshot'\]\['com.linkedin.pegasus2avro.metadata.snapshot.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com.linkedin.pegasus2avro.dataset.DatasetProperties'\]\['customProperties'\]\['transient_lastddltime'\]",
|
|
r"root\[\d+\]\['proposedSnapshot'\]\['com.linkedin.pegasus2avro.metadata.snapshot.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com.linkedin.pegasus2avro.dataset.DatasetProperties'\]\['customProperties'\]\['numfiles'\]",
|
|
r"root\[\d+\]\['proposedSnapshot'\]\['com.linkedin.pegasus2avro.metadata.snapshot.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com.linkedin.pegasus2avro.dataset.DatasetProperties'\]\['customProperties'\]\['totalsize'\]",
|
|
r"root\[\d+\]\['proposedSnapshot'\]\['com.linkedin.pegasus2avro.metadata.snapshot.DatasetSnapshot'\]\['aspects'\]\[\d+\]\['com.linkedin.pegasus2avro.dataset.DatasetProperties'\]\['customProperties'\]\['create_date'\]",
|
|
],
|
|
)
|
|
|
|
|
|
@freeze_time(FROZEN_TIME)
|
|
@pytest.mark.integration
|
|
def test_presto_on_hive_instance_ingest(
|
|
loaded_presto_on_hive, test_resources_dir, pytestconfig, tmp_path, mock_time
|
|
):
|
|
instance = "production_warehouse"
|
|
platform = "presto-on-hive"
|
|
mce_out_file = "presto_on_hive_instance_mces.json"
|
|
events_file = tmp_path / mce_out_file
|
|
pipeline_config = {
|
|
"run_id": "presto-on-hive-instance-test",
|
|
"source": {
|
|
"type": data_platform,
|
|
"config": PrestoOnHiveConfig(
|
|
host_port="localhost:5432",
|
|
database="metastore",
|
|
database_alias="hive",
|
|
username="postgres",
|
|
scheme="postgresql+psycopg2",
|
|
include_views=True,
|
|
include_tables=True,
|
|
platform_instance="production_warehouse",
|
|
schema_pattern=AllowDenyPattern(allow=["^public"]),
|
|
).dict(),
|
|
},
|
|
"sink": {
|
|
"type": "file",
|
|
"config": FileSinkConfig(filename=str(events_file)).dict(),
|
|
},
|
|
}
|
|
|
|
# Run the metadata ingestion pipeline.
|
|
pipeline = Pipeline.create(pipeline_config)
|
|
pipeline.run()
|
|
pipeline.pretty_print_summary()
|
|
pipeline.raise_from_status(raise_warnings=True)
|
|
|
|
# Assert that all events generated have instance specific urns
|
|
urn_pattern = "^" + re.escape(
|
|
f"urn:li:dataset:(urn:li:dataPlatform:{platform},{instance}."
|
|
)
|
|
assert (
|
|
mce_helpers.assert_mce_entity_urn(
|
|
"ALL",
|
|
entity_type="dataset",
|
|
regex_pattern=urn_pattern,
|
|
file=events_file,
|
|
)
|
|
>= 0
|
|
), "There should be at least one match"
|
|
|
|
assert (
|
|
mce_helpers.assert_mcp_entity_urn(
|
|
"ALL",
|
|
entity_type="dataset",
|
|
regex_pattern=urn_pattern,
|
|
file=events_file,
|
|
)
|
|
>= 0
|
|
), "There should be at least one MCP"
|
|
|
|
# all dataset entities emitted must have a dataPlatformInstance aspect emitted
|
|
# there must be at least one entity emitted
|
|
assert (
|
|
mce_helpers.assert_for_each_entity(
|
|
entity_type="dataset",
|
|
aspect_name="dataPlatformInstance",
|
|
aspect_field_matcher={
|
|
"instance": f"urn:li:dataPlatformInstance:(urn:li:dataPlatform:{platform},{instance})"
|
|
},
|
|
file=events_file,
|
|
)
|
|
>= 1
|
|
)
|