1464 lines
55 KiB
Python

import glob
import json
import logging
import os
import re
import shutil
import unittest.mock
from dataclasses import Field, dataclass, field
from datetime import datetime, timezone
from enum import auto
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Tuple
import avro.schema
import click
from utils import should_write_json_file
from datahub.configuration.common import ConfigEnum, PermissiveConfigModel
from datahub.emitter.mce_builder import (
make_data_platform_urn,
make_dataset_urn,
make_schema_field_urn,
)
from datahub.emitter.mcp import MetadataChangeProposalWrapper
from datahub.emitter.rest_emitter import DatahubRestEmitter
from datahub.ingestion.api.common import PipelineContext, RecordEnvelope
from datahub.ingestion.api.sink import NoopWriteCallback
from datahub.ingestion.extractor.schema_util import avro_schema_to_mce_fields
from datahub.ingestion.sink.file import FileSink, FileSinkConfig
from datahub.metadata.schema_classes import (
BrowsePathEntryClass,
BrowsePathsClass,
BrowsePathsV2Class,
DatasetPropertiesClass,
ForeignKeyConstraintClass,
GlobalTagsClass,
OtherSchemaClass,
SchemaFieldClass as SchemaField,
SchemaFieldDataTypeClass,
SchemaMetadataClass,
StringTypeClass,
StructuredPropertiesClass,
StructuredPropertyDefinitionClass,
StructuredPropertySettingsClass,
StructuredPropertyValueAssignmentClass,
SubTypesClass,
TagAssociationClass,
)
from datahub.metadata.urns import StructuredPropertyUrn, Urn
logger = logging.getLogger(__name__)
# TODO: Support generating docs for each event type in entity registry.
def capitalize_first(something: str) -> str:
return something[0:1].upper() + something[1:]
class EntityCategory(ConfigEnum):
CORE = auto()
INTERNAL = auto()
@dataclass
class EntityDefinition:
name: str
keyAspect: str
aspects: List[str] = field(default_factory=list)
aspect_map: Optional[Dict[str, Any]] = None
relationship_map: Optional[Dict[str, str]] = None
doc: Optional[str] = None
doc_file_contents: Optional[str] = None
# entities are by default in the CORE category unless specified otherwise
category: EntityCategory = EntityCategory.CORE
priority: Optional[int] = None
# schema: Optional[avro.schema.Schema] = None
# logical_schema: Optional[avro.schema.Schema] = None
# @validator("name")
# def lower_everything(cls, v: str) -> str:
# return v.lower()
@property
def display_name(self):
return capitalize_first(self.name)
@dataclass
class AspectDefinition:
name: str
EntityUrns: Optional[List[str]] = None
schema: Optional[avro.schema.Schema] = None
type: Optional[str] = None
@dataclass
class EventDefinition:
name: str
# New dataclasses for lineage representation
@dataclass
class LineageRelationship:
name: str
entityTypes: List[str]
isLineage: bool = True
@dataclass
class LineageField:
name: str
path: str
isLineage: bool = True
relationship: Optional[LineageRelationship] = None
@dataclass
class LineageAspect:
aspect: str
fields: List[LineageField]
@dataclass
class LineageEntity:
aspects: Dict[str, LineageAspect]
@dataclass
class LineageData:
entities: Dict[str, LineageEntity]
entity_registry: Dict[str, EntityDefinition] = {}
def get_aspects_from_snapshot(
snapshot_schema: avro.schema.RecordSchema,
) -> Dict[str, AspectDefinition]:
union_schema: avro.schema.UnionSchema = snapshot_schema.fields[1].type.items
aspect_map = {}
for aspect_schema in union_schema.schemas:
if "Aspect" in aspect_schema.props:
aspectDef = AspectDefinition(
schema=aspect_schema,
name=aspect_schema.props["Aspect"].get("name"),
)
aspect_map[aspectDef.name] = aspectDef
return aspect_map
aspect_registry: Dict[str, AspectDefinition] = {}
# A holder for generated docs
generated_documentation: Dict[str, str] = {}
# Patch add_name method to NOT complain about duplicate names
def add_name(self, name_attr, space_attr, new_schema):
to_add = avro.schema.Name(name_attr, space_attr, self.default_namespace)
if self.names:
self.names[to_add.fullname] = new_schema
return to_add
def load_schema_file(schema_file: str) -> None:
logger.debug(f"Loading schema file: {schema_file}")
with open(schema_file) as f:
raw_schema_text = f.read()
avro_schema = avro.schema.parse(raw_schema_text)
if (
isinstance(avro_schema, avro.schema.RecordSchema)
and "Aspect" in avro_schema.other_props
):
# probably an aspect schema
record_schema: avro.schema.RecordSchema = avro_schema
aspect_def = record_schema.get_prop("Aspect")
aspect_definition = AspectDefinition(**aspect_def)
aspect_definition.schema = record_schema
aspect_registry[aspect_definition.name] = aspect_definition
logger.debug(f"Loaded aspect schema: {aspect_definition.name}")
elif avro_schema.name == "MetadataChangeEvent":
# probably an MCE schema
field: Field = avro_schema.fields[1]
assert isinstance(field.type, avro.schema.UnionSchema)
for member_schema in field.type.schemas:
if "Entity" in member_schema.props:
entity_def = member_schema.props["Entity"]
entity_name = entity_def["name"]
entity_definition = entity_registry.get(
entity_name, EntityDefinition(**entity_def)
)
entity_definition.aspect_map = get_aspects_from_snapshot(member_schema)
all_aspects = [a for a in entity_definition.aspect_map]
# in terms of order, we prefer the aspects from snapshot over the aspects from the config registry
# so we flip the aspect list here
for aspect_name in entity_definition.aspects:
if aspect_name not in all_aspects:
all_aspects.append(aspect_name)
entity_definition.aspects = all_aspects
entity_registry[entity_name] = entity_definition
logger.debug(
f"Loaded entity schema: {entity_name} with aspects: {all_aspects}"
)
else:
logger.debug(f"Ignoring schema {schema_file}")
def extract_lineage_fields_from_schema(
schema: avro.schema.Schema, current_path: str = ""
) -> List[LineageField]:
"""
Recursively extract lineage fields from an Avro schema.
Args:
schema: The Avro schema to analyze
current_path: The current field path (for nested fields)
Returns:
List of LineageField objects found in the schema
"""
lineage_fields = []
if isinstance(schema, avro.schema.RecordSchema):
logger.debug(f"Analyzing record schema at path: {current_path}")
for field in schema.fields:
field_path = f"{current_path}.{field.name}" if current_path else field.name
logger.debug(f"Analyzing field: {field.name} at path: {field_path}")
# Check if this field has lineage properties
is_lineage = False
relationship_info = None
# Check for isLineage property
if hasattr(field, "other_props") and field.other_props:
is_lineage = field.other_props.get("isLineage", False)
if is_lineage:
logger.debug(f"Found isLineage=true for field: {field_path}")
# Check for Relationship property
if "Relationship" in field.other_props:
relationship_data = field.other_props["Relationship"]
logger.debug(
f"Found Relationship property for field: {field_path}: {relationship_data}"
)
# Handle both direct relationship and path-based relationship
if "entityTypes" in relationship_data:
# Direct relationship
relationship_is_lineage = relationship_data.get(
"isLineage", False
)
relationship_info = LineageRelationship(
name=relationship_data.get("name", ""),
entityTypes=relationship_data.get("entityTypes", []),
isLineage=relationship_is_lineage,
)
is_lineage = is_lineage or relationship_is_lineage
else:
# Path-based relationship - find the actual relationship data
for _, value in relationship_data.items():
if isinstance(value, dict) and "entityTypes" in value:
relationship_is_lineage = value.get("isLineage", False)
relationship_info = LineageRelationship(
name=value.get("name", ""),
entityTypes=value.get("entityTypes", []),
isLineage=relationship_is_lineage,
)
is_lineage = is_lineage or relationship_is_lineage
break
# If this field is lineage, add it to the results
if is_lineage:
lineage_field = LineageField(
name=field.name,
path=field_path,
isLineage=True,
relationship=relationship_info,
)
lineage_fields.append(lineage_field)
logger.debug(f"Added lineage field: {field_path}")
# Recursively check nested fields
nested_fields = extract_lineage_fields_from_schema(field.type, field_path)
lineage_fields.extend(nested_fields)
elif isinstance(schema, avro.schema.ArraySchema):
logger.debug(f"Analyzing array schema at path: {current_path}")
# For arrays, check the items schema
nested_fields = extract_lineage_fields_from_schema(schema.items, current_path)
lineage_fields.extend(nested_fields)
elif isinstance(schema, avro.schema.UnionSchema):
logger.debug(f"Analyzing union schema at path: {current_path}")
# For unions, check all possible schemas
for union_schema in schema.schemas:
nested_fields = extract_lineage_fields_from_schema(
union_schema, current_path
)
lineage_fields.extend(nested_fields)
return lineage_fields
def extract_lineage_fields() -> LineageData:
"""
Extract lineage fields from all aspects in the aspect registry.
Returns:
LineageData containing all lineage information organized by entity and aspect
"""
logger.info("Starting lineage field extraction")
lineage_data = LineageData(entities={})
# Group aspects by entity
entity_aspects: Dict[str, List[str]] = {}
for entity_name, entity_def in entity_registry.items():
entity_aspects[entity_name] = entity_def.aspects
logger.debug(f"Entity {entity_name} has aspects: {entity_def.aspects}")
# Process each aspect
for aspect_name, aspect_def in aspect_registry.items():
logger.debug(f"Processing aspect: {aspect_name}")
if not aspect_def.schema:
logger.warning(f"Aspect {aspect_name} has no schema, skipping")
continue
# Extract lineage fields from this aspect
lineage_fields = extract_lineage_fields_from_schema(aspect_def.schema)
if lineage_fields:
logger.info(
f"Found {len(lineage_fields)} lineage fields in aspect {aspect_name}"
)
# Find which entities use this aspect
for entity_name, entity_aspect_list in entity_aspects.items():
if aspect_name in entity_aspect_list:
logger.debug(
f"Aspect {aspect_name} is used by entity {entity_name}"
)
# Initialize entity if not exists
if entity_name not in lineage_data.entities:
lineage_data.entities[entity_name] = LineageEntity(aspects={})
# Add aspect with lineage fields
lineage_aspect = LineageAspect(
aspect=aspect_name, fields=lineage_fields
)
lineage_data.entities[entity_name].aspects[aspect_name] = (
lineage_aspect
)
else:
logger.debug(f"No lineage fields found in aspect {aspect_name}")
# Log summary
total_entities_with_lineage = len(lineage_data.entities)
total_aspects_with_lineage = sum(
len(entity.aspects) for entity in lineage_data.entities.values()
)
total_lineage_fields = sum(
len(aspect.fields)
for entity in lineage_data.entities.values()
for aspect in entity.aspects.values()
)
logger.info("Lineage extraction complete:")
logger.info(f" - Entities with lineage: {total_entities_with_lineage}")
logger.info(f" - Aspects with lineage: {total_aspects_with_lineage}")
logger.info(f" - Total lineage fields: {total_lineage_fields}")
return lineage_data
def generate_lineage_json(lineage_data: LineageData) -> str:
"""
Generate JSON representation of lineage data.
Args:
lineage_data: The lineage data to convert to JSON
Returns:
JSON string representation
"""
logger.info("Generating lineage JSON")
# Convert dataclasses to dictionaries
def lineage_field_to_dict(field: LineageField) -> Dict[str, Any]:
result = {"name": field.name, "path": field.path, "isLineage": field.isLineage}
if field.relationship:
result["relationship"] = {
"name": field.relationship.name,
"entityTypes": field.relationship.entityTypes,
"isLineage": field.relationship.isLineage,
}
return result
def lineage_aspect_to_dict(aspect: LineageAspect) -> Dict[str, Any]:
return {
"aspect": aspect.aspect,
"fields": [lineage_field_to_dict(field) for field in aspect.fields],
}
def lineage_entity_to_dict(entity: LineageEntity) -> Dict[str, Any]:
return {
aspect_name: lineage_aspect_to_dict(aspect)
for aspect_name, aspect in entity.aspects.items()
}
# Build the final JSON structure
json_data = {
"entities": {
entity_name: lineage_entity_to_dict(entity)
for entity_name, entity in lineage_data.entities.items()
}
}
json_data["generated_by"] = "metadata-ingestion/scripts/modeldocgen.py"
json_data["generated_at"] = datetime.now(timezone.utc).isoformat()
json_string = json.dumps(json_data, indent=2)
logger.info(f"Generated lineage JSON with {len(json_string)} characters")
return json_string
@dataclass
class Relationship:
name: str
src: str
dst: str
doc: Optional[str] = None
id: Optional[str] = None
@dataclass
class RelationshipAdjacency:
self_loop: List[Relationship] = field(default_factory=list)
incoming: List[Relationship] = field(default_factory=list)
outgoing: List[Relationship] = field(default_factory=list)
@dataclass
class RelationshipGraph:
map: Dict[str, RelationshipAdjacency] = field(default_factory=dict)
def add_edge(
self, src: str, dst: str, label: str, reason: str, edge_id: Optional[str] = None
) -> None:
relnship = Relationship(
label, src, dst, reason, id=edge_id or f"{src}:{label}:{dst}:{reason}"
)
if src == dst:
adjacency = self.map.get(src, RelationshipAdjacency())
for reln in adjacency.self_loop:
if relnship.id == reln.id:
print(f"Skipping adding edge since ids match {reln.id}")
return
adjacency.self_loop.append(relnship)
self.map[src] = adjacency
else:
adjacency = self.map.get(src, RelationshipAdjacency())
for reln in adjacency.outgoing:
if relnship.id == reln.id:
logger.info(f"Skipping adding edge since ids match {reln.id}")
return
adjacency.outgoing.append(relnship)
self.map[src] = adjacency
adjacency = self.map.get(dst, RelationshipAdjacency())
for reln in adjacency.incoming:
if relnship.id == reln.id:
logger.info(f"Skipping adding edge since ids match {reln.id}")
return
adjacency.incoming.append(relnship)
self.map[dst] = adjacency
def get_adjacency(self, node: str) -> RelationshipAdjacency:
return self.map.get(node, RelationshipAdjacency())
def make_relnship_docs(relationships: List[Relationship], direction: str) -> str:
doc = ""
map: Dict[str, List[Relationship]] = {}
for relnship in relationships:
map[relnship.name] = map.get(relnship.name, [])
map[relnship.name].append(relnship)
for rel_name, relnships in map.items():
doc += f"\n- {rel_name}\n"
for relnship in relnships:
doc += f"\n - {relnship.dst if direction == 'outgoing' else relnship.src}{relnship.doc or ''}"
return doc
@dataclass
class FieldInfo:
name: str
type_name: str
is_array: bool
is_optional: bool
description: str
annotations: List[str]
def simplify_type_name(field_type: Any) -> Tuple[str, bool, bool]:
"""
Extract simplified type name, whether it's an array, and whether it's optional.
Returns: (type_name, is_array, is_optional)
"""
is_optional = False
is_array = False
current_type = field_type
# Handle union types (optional fields)
if isinstance(current_type, avro.schema.UnionSchema):
non_null_types = [t for t in current_type.schemas if t.type != "null"]
if len(non_null_types) == 1:
is_optional = True
current_type = non_null_types[0]
else:
# Multiple non-null types - just show as union
return "union", False, True
# Handle array types
if isinstance(current_type, avro.schema.ArraySchema):
is_array = True
current_type = current_type.items
# Get the actual type name
if isinstance(current_type, avro.schema.RecordSchema):
type_name = current_type.name
elif isinstance(current_type, avro.schema.PrimitiveSchema):
type_name = current_type.type
elif isinstance(current_type, avro.schema.MapSchema):
type_name = "map"
elif isinstance(current_type, avro.schema.EnumSchema):
type_name = current_type.name
else:
type_name = (
str(current_type.type) if hasattr(current_type, "type") else "unknown"
)
return type_name, is_array, is_optional
def extract_fields_from_schema(schema: avro.schema.RecordSchema) -> List[FieldInfo]:
"""Extract top-level fields from an Avro schema."""
fields = []
for avro_field in schema.fields:
type_name, is_array, is_optional = simplify_type_name(avro_field.type)
# Extract annotations
annotations = []
# Check for deprecated field
if hasattr(avro_field, "other_props") and avro_field.other_props:
if avro_field.other_props.get("deprecated"):
annotations.append("⚠️ Deprecated")
if hasattr(avro_field, "other_props") and avro_field.other_props:
if "Searchable" in avro_field.other_props:
searchable_config = avro_field.other_props["Searchable"]
# Check if there's a custom search field name
if (
isinstance(searchable_config, dict)
and "fieldName" in searchable_config
):
search_field_name = searchable_config["fieldName"]
# Only show override if it differs from actual field name
if search_field_name != avro_field.name:
annotations.append(f"Searchable ({search_field_name})")
else:
annotations.append("Searchable")
else:
annotations.append("Searchable")
if "Relationship" in avro_field.other_props:
relationship_info = avro_field.other_props["Relationship"]
# Extract relationship name if available
rel_name = None
if isinstance(relationship_info, dict):
if "name" in relationship_info:
rel_name = relationship_info.get("name")
else:
# Path-based relationship
for _, v in relationship_info.items():
if isinstance(v, dict) and "name" in v:
rel_name = v.get("name")
break
if rel_name:
annotations.append(f"{rel_name}")
# Get field description
description = (
avro_field.doc if hasattr(avro_field, "doc") and avro_field.doc else ""
)
fields.append(
FieldInfo(
name=avro_field.name,
type_name=type_name,
is_array=is_array,
is_optional=is_optional,
description=description,
annotations=annotations,
)
)
return fields
def generate_field_table(fields: List[FieldInfo], common_types: set) -> str:
"""Generate markdown table for fields with hyperlinks to common types."""
table = "\n| Field | Type | Required | Description | Annotations |\n"
table += "|-------|------|----------|-------------|-------------|\n"
for field_info in fields:
# Format type with optional hyperlink
type_display = field_info.type_name
if field_info.type_name in common_types:
# Create anchor link (lowercase, replace spaces with hyphens)
anchor = field_info.type_name.lower().replace(" ", "-")
type_display = f"[{field_info.type_name}](#{anchor})"
if field_info.is_array:
type_display += "[]"
# Required/optional
required = "" if not field_info.is_optional else ""
# Annotations
notes = ", ".join(field_info.annotations) if field_info.annotations else ""
# Clean description (remove newlines, truncate if too long)
desc = field_info.description.replace("\n", " ").strip()
if len(desc) > 100:
desc = desc[:97] + "..."
table += (
f"| {field_info.name} | {type_display} | {required} | {desc} | {notes} |\n"
)
return table
def identify_common_types(
entity_def: EntityDefinition,
) -> Dict[str, avro.schema.RecordSchema]:
"""
Identify types that appear in multiple aspects and should be documented separately.
Returns a dict of type_name -> schema for common types.
"""
type_usage: Dict[str, Tuple[avro.schema.RecordSchema, int]] = {}
# Track which types appear and how often
for aspect_name in entity_def.aspects or []:
if aspect_name not in aspect_registry:
continue
aspect_def = aspect_registry[aspect_name]
if not aspect_def.schema:
continue
# Walk through fields and collect record types
for avro_field in aspect_def.schema.fields:
_collect_record_types(avro_field.type, type_usage)
# Common types are those that appear more than once OR are well-known types
well_known_types = {
"AuditStamp",
"Edge",
"ChangeAuditStamps",
"TimeStamp",
"Urn",
"DataPlatformInstance",
}
common_types = {}
for type_name, (schema, count) in type_usage.items():
if count > 1 or type_name in well_known_types:
common_types[type_name] = schema
return common_types
def _collect_record_types(
field_type: Any, type_usage: Dict[str, Tuple[avro.schema.RecordSchema, int]]
) -> None:
"""Recursively collect record types from a field type."""
if isinstance(field_type, avro.schema.UnionSchema):
for union_type in field_type.schemas:
_collect_record_types(union_type, type_usage)
elif isinstance(field_type, avro.schema.ArraySchema):
_collect_record_types(field_type.items, type_usage)
elif isinstance(field_type, avro.schema.RecordSchema):
type_name = field_type.name
if type_name in type_usage:
schema, count = type_usage[type_name]
type_usage[type_name] = (schema, count + 1)
else:
type_usage[type_name] = (field_type, 1)
def generate_common_types_section(
common_types: Dict[str, avro.schema.RecordSchema],
) -> str:
"""Generate the Common Types reference section."""
if not common_types:
return ""
section = "\n### Common Types\n\n"
section += "These types are used across multiple aspects in this entity.\n\n"
for type_name in sorted(common_types.keys()):
schema = common_types[type_name]
section += f"#### {type_name}\n\n"
doc = schema.get_prop("doc") if hasattr(schema, "get_prop") else None
if doc:
section += f"{doc}\n\n"
# Show fields of this common type
section += "**Fields:**\n\n"
for avro_field in schema.fields:
type_name_inner, is_array, is_optional = simplify_type_name(avro_field.type)
type_display = type_name_inner
if is_array:
type_display += "[]"
optional_marker = "?" if is_optional else ""
field_doc = (
avro_field.doc if hasattr(avro_field, "doc") and avro_field.doc else ""
)
field_doc = field_doc.replace("\n", " ").strip()
if len(field_doc) > 80:
field_doc = field_doc[:77] + "..."
section += f"- `{avro_field.name}` ({type_display}{optional_marker}): {field_doc}\n"
section += "\n"
return section
def make_entity_docs(entity_display_name: str, graph: RelationshipGraph) -> str:
entity_name = entity_display_name[0:1].lower() + entity_display_name[1:]
entity_def: Optional[EntityDefinition] = entity_registry.get(entity_name)
if entity_def:
doc = entity_def.doc_file_contents or (
f"# {entity_def.display_name}\n{entity_def.doc}"
if entity_def.doc
else f"# {entity_def.display_name}"
)
# Identify common types for this entity
common_types_map = identify_common_types(entity_def)
common_type_names = set(common_types_map.keys())
# Add Tabs import at the start
tabs_import = (
"\nimport Tabs from '@theme/Tabs';\nimport TabItem from '@theme/TabItem';\n"
)
# create aspects section
aspects_section = "\n### Aspects\n" if entity_def.aspects else ""
deprecated_aspects_section = ""
timeseries_aspects_section = ""
for aspect in entity_def.aspects or []:
aspect_definition: AspectDefinition = aspect_registry[aspect]
assert aspect_definition
assert aspect_definition.schema
deprecated_message = (
" (Deprecated)"
if aspect_definition.schema.get_prop("Deprecated")
else ""
)
timeseries_qualifier = (
" (Timeseries)" if aspect_definition.type == "timeseries" else ""
)
# Generate aspect documentation with tabs
this_aspect_doc = ""
this_aspect_doc += (
f"\n#### {aspect}{deprecated_message}{timeseries_qualifier}\n"
)
this_aspect_doc += f"{aspect_definition.schema.get_prop('doc')}\n\n"
# Extract fields for table view
fields = extract_fields_from_schema(aspect_definition.schema)
# Generate tabbed interface
this_aspect_doc += "<Tabs>\n"
this_aspect_doc += '<TabItem value="fields" label="Fields" default>\n\n'
this_aspect_doc += generate_field_table(fields, common_type_names)
this_aspect_doc += "\n</TabItem>\n"
this_aspect_doc += '<TabItem value="raw" label="Raw Schema">\n\n'
this_aspect_doc += f"```javascript\n{json.dumps(aspect_definition.schema.to_json(), indent=2)}\n```\n"
this_aspect_doc += "\n</TabItem>\n"
this_aspect_doc += "</Tabs>\n\n"
if deprecated_message:
deprecated_aspects_section += this_aspect_doc
elif timeseries_qualifier:
timeseries_aspects_section += this_aspect_doc
else:
aspects_section += this_aspect_doc
aspects_section += timeseries_aspects_section + deprecated_aspects_section
# Generate common types section
common_types_section = generate_common_types_section(common_types_map)
# create relationships section
relationships_section = "\n### Relationships\n"
adjacency = graph.get_adjacency(entity_def.display_name)
if adjacency.self_loop:
relationships_section += "\n#### Self\nThese are the relationships to itself, stored in this entity's aspects"
for relnship in adjacency.self_loop:
relationships_section += (
f"\n- {relnship.name} ({relnship.doc[1:] if relnship.doc else ''})"
)
if adjacency.outgoing:
relationships_section += "\n#### Outgoing\nThese are the relationships stored in this entity's aspects"
relationships_section += make_relnship_docs(
adjacency.outgoing, direction="outgoing"
)
if adjacency.incoming:
relationships_section += "\n#### Incoming\nThese are the relationships stored in other entity's aspects"
relationships_section += make_relnship_docs(
adjacency.incoming, direction="incoming"
)
# create global metadata graph
global_graph_url = "https://github.com/datahub-project/static-assets/raw/main/imgs/datahub-metadata-model.png"
global_graph_section = (
f"\n### [Global Metadata Model]({global_graph_url})"
+ f"\n![Global Graph]({global_graph_url})"
)
# create technical reference guide section
technical_reference_section = "\n## Technical Reference Guide\n\n"
technical_reference_section += (
"The sections above provide an overview of how to use this entity. "
"The following sections provide detailed technical information about how metadata is stored and represented in DataHub.\n\n"
)
technical_reference_section += (
"**Aspects** are the individual pieces of metadata that can be attached to an entity. "
"Each aspect contains specific information (like ownership, tags, or properties) and is stored as a separate record, "
"allowing for flexible and incremental metadata updates.\n\n"
)
technical_reference_section += (
"**Relationships** show how this entity connects to other entities in the metadata graph. "
"These connections are derived from the fields within each aspect and form the foundation of DataHub's knowledge graph.\n\n"
)
technical_reference_section += (
"### Reading the Field Tables\n\n"
"Each aspect's field table includes an **Annotations** column that provides additional metadata about how fields are used:\n\n"
"- **⚠️ Deprecated**: This field is deprecated and may be removed in a future version. Check the description for the recommended alternative\n"
"- **Searchable**: This field is indexed and can be searched in DataHub's search interface\n"
"- **Searchable (fieldname)**: When the field name in parentheses is shown, it indicates the field is indexed under a different name in the search index. For example, `dashboardTool` is indexed as `tool`\n"
"- **→ RelationshipName**: This field creates a relationship to another entity. The arrow indicates this field contains a reference (URN) to another entity, and the name indicates the type of relationship (e.g., `→ Contains`, `→ OwnedBy`)\n\n"
"Fields with complex types (like `Edge`, `AuditStamp`) link to their definitions in the [Common Types](#common-types) section below.\n"
)
final_doc = (
doc
+ tabs_import
+ technical_reference_section
+ aspects_section
+ common_types_section
+ relationships_section
+ global_graph_section
)
generated_documentation[entity_name] = final_doc
return final_doc
else:
raise Exception(f"Failed to find information for entity: {entity_name}")
def create_search_field_name_property() -> List[MetadataChangeProposalWrapper]:
"""
Create the structured property for documenting search field names.
This property is used to capture the actual field name used in the search index
when it differs from the field name in the schema (e.g., 'instance' field is
indexed as 'platformInstance').
Returns:
List of MCPs for the property definition and settings
"""
property_id = "com.datahub.metadata.searchFieldName"
property_urn = str(
StructuredPropertyUrn.from_string(f"urn:li:structuredProperty:{property_id}")
)
# Create property definition
definition_mcp = MetadataChangeProposalWrapper(
entityUrn=property_urn,
aspect=StructuredPropertyDefinitionClass(
qualifiedName=property_id,
displayName="Search Field Name",
valueType=Urn.make_data_type_urn("string"),
description=(
"The field name used in the search index when it differs from the schema field name. "
"Use this field name when constructing search queries for this field."
),
entityTypes=[Urn.make_entity_type_urn("schemaField")],
cardinality="SINGLE",
immutable=False,
),
)
# Create property settings for display
settings_mcp = MetadataChangeProposalWrapper(
entityUrn=property_urn,
aspect=StructuredPropertySettingsClass(
isHidden=False,
showInSearchFilters=False,
showInAssetSummary=True,
showAsAssetBadge=False,
showInColumnsTable=True, # Show as a column in schema tables
),
)
return [definition_mcp, settings_mcp]
def generate_stitched_record(
relnships_graph: RelationshipGraph,
) -> Iterable[MetadataChangeProposalWrapper]:
def strip_types(field_path: str) -> str:
final_path = field_path
final_path = re.sub(r"(\[type=[a-zA-Z]+\]\.)", "", final_path)
final_path = re.sub(r"^\[version=2.0\]\.", "", final_path)
return final_path
# Track schema fields that need structured properties
schema_field_properties: Dict[
str, str
] = {} # schema_field_urn -> search_field_name
for entity_name, entity_def in entity_registry.items():
entity_display_name = entity_def.display_name
entity_fields = []
for aspect_name in entity_def.aspects:
if aspect_name not in aspect_registry:
print(f"Did not find aspect name: {aspect_name} in aspect_registry")
continue
# all aspects should have a schema
aspect_schema = aspect_registry[aspect_name].schema
assert aspect_schema
entity_fields.append(
{
"type": aspect_schema.to_json(),
"name": aspect_name,
}
)
if entity_fields:
names = avro.schema.Names()
field_objects = []
for f in entity_fields:
field = avro.schema.Field(
f["type"],
f["name"],
has_default=False,
)
field_objects.append(field)
with unittest.mock.patch("avro.schema.Names.add_name", add_name):
entity_avro_schema = avro.schema.RecordSchema(
name=entity_name,
namespace="datahub.metadata.model",
names=names,
fields=[],
)
entity_avro_schema.set_prop("fields", field_objects)
rawSchema = json.dumps(entity_avro_schema.to_json())
# always add the URN which is the primary key
urn_field = SchemaField(
fieldPath="urn",
type=SchemaFieldDataTypeClass(type=StringTypeClass()),
nativeDataType="string",
nullable=False,
isPartOfKey=True,
description=f"The primary identifier for the {entity_name} entity. See the {entity_def.keyAspect} field to understand the structure of this urn.",
)
schema_fields: List[SchemaField] = [urn_field] + avro_schema_to_mce_fields(
rawSchema
)
foreign_keys: List[ForeignKeyConstraintClass] = []
source_dataset_urn = make_dataset_urn(
platform="datahub",
name=f"{entity_display_name}",
)
for f_field in schema_fields:
if f_field.jsonProps:
json_dict = json.loads(f_field.jsonProps)
if "Aspect" in json_dict:
aspect_info = json_dict["Aspect"]
f_field.globalTags = f_field.globalTags or GlobalTagsClass(
tags=[]
)
f_field.globalTags.tags.append(
TagAssociationClass(tag="urn:li:tag:Aspect")
)
# if this is the key aspect, also add primary-key
if entity_def.keyAspect == aspect_info.get("name"):
f_field.isPartOfKey = True
if aspect_info.get("type", "") == "timeseries":
# f_field.globalTags = f_field.globalTags or GlobalTagsClass(
# tags=[]
# )
f_field.globalTags.tags.append(
TagAssociationClass(tag="urn:li:tag:Temporal")
)
if "Searchable" in json_dict:
f_field.globalTags = f_field.globalTags or GlobalTagsClass(
tags=[]
)
f_field.globalTags.tags.append(
TagAssociationClass(tag="urn:li:tag:Searchable")
)
# Check if search field name differs from actual field name
searchable_config = json_dict["Searchable"]
if (
isinstance(searchable_config, dict)
and "fieldName" in searchable_config
):
search_field_name = searchable_config["fieldName"]
# Extract the actual field name from the field path
# Field path format: "[version=2.0].[type=...].<fieldName>"
actual_field_name = strip_types(f_field.fieldPath).split(
"."
)[-1]
if search_field_name != actual_field_name:
# Track this for later - we'll emit a separate MCP for the schema field entity
schema_field_urn = make_schema_field_urn(
source_dataset_urn, f_field.fieldPath
)
schema_field_properties[schema_field_urn] = (
search_field_name
)
if "Relationship" in json_dict:
relationship_info = json_dict["Relationship"]
# detect if we have relationship specified at leaf level or thru path specs
if "entityTypes" not in relationship_info:
# path spec
assert len(relationship_info.keys()) == 1, (
"We should never have more than one path spec assigned to a relationship annotation"
)
final_info = None
for _, v in relationship_info.items():
final_info = v
relationship_info = final_info
assert "entityTypes" in relationship_info
entity_types: List[str] = relationship_info.get(
"entityTypes", []
)
relnship_name = relationship_info.get("name", None)
for entity_type in entity_types:
destination_entity_name = capitalize_first(entity_type)
foreign_dataset_urn = make_dataset_urn(
platform="datahub",
name=destination_entity_name,
)
fkey = ForeignKeyConstraintClass(
name=relnship_name,
foreignDataset=foreign_dataset_urn,
foreignFields=[
make_schema_field_urn(foreign_dataset_urn, "urn")
],
sourceFields=[
make_schema_field_urn(
source_dataset_urn, f_field.fieldPath
)
],
)
foreign_keys.append(fkey)
relnships_graph.add_edge(
entity_display_name,
destination_entity_name,
fkey.name,
f" via `{strip_types(f_field.fieldPath)}`",
edge_id=f"{entity_display_name}:{fkey.name}:{destination_entity_name}:{strip_types(f_field.fieldPath)}",
)
dataset_urn = make_dataset_urn(
platform="datahub",
name=entity_display_name,
)
yield from MetadataChangeProposalWrapper.construct_many(
entityUrn=dataset_urn,
aspects=[
SchemaMetadataClass(
schemaName=str(entity_name),
platform=make_data_platform_urn("datahub"),
platformSchema=OtherSchemaClass(rawSchema=rawSchema),
fields=schema_fields,
version=0,
hash="",
foreignKeys=foreign_keys if foreign_keys else None,
),
GlobalTagsClass(
tags=[TagAssociationClass(tag="urn:li:tag:Entity")]
),
BrowsePathsClass([f"/prod/datahub/entities/{entity_display_name}"]),
BrowsePathsV2Class(
[
BrowsePathEntryClass(id="entities"),
BrowsePathEntryClass(id=entity_display_name),
]
),
DatasetPropertiesClass(
description=make_entity_docs(
dataset_urn.split(":")[-1].split(",")[1], relnships_graph
)
),
SubTypesClass(typeNames=["entity"]),
],
)
# Emit structured properties for schema fields
property_urn = "urn:li:structuredProperty:com.datahub.metadata.searchFieldName"
for schema_field_urn, search_field_name in schema_field_properties.items():
yield MetadataChangeProposalWrapper(
entityUrn=schema_field_urn,
aspect=StructuredPropertiesClass(
properties=[
StructuredPropertyValueAssignmentClass(
propertyUrn=property_urn,
values=[search_field_name],
)
]
),
)
@dataclass
class EntityAspectName:
entityName: str
aspectName: str
class AspectPluginConfig(PermissiveConfigModel):
className: str
enabled: bool
supportedEntityAspectNames: List[EntityAspectName] = []
packageScan: Optional[List[str]] = None
supportedOperations: Optional[List[str]] = None
class PluginConfiguration(PermissiveConfigModel):
aspectPayloadValidators: Optional[List[AspectPluginConfig]] = None
mutationHooks: Optional[List[AspectPluginConfig]] = None
mclSideEffects: Optional[List[AspectPluginConfig]] = None
mcpSideEffects: Optional[List[AspectPluginConfig]] = None
class EntityRegistry(PermissiveConfigModel):
entities: List[EntityDefinition]
events: Optional[List[EventDefinition]]
plugins: Optional[PluginConfiguration] = None
def load_registry_file(registry_file: str) -> Dict[str, EntityDefinition]:
import yaml
with open(registry_file, "r") as f:
registry = EntityRegistry.parse_obj(yaml.safe_load(f))
for index, entity_def in enumerate(registry.entities):
entity_def.priority = index
entity_registry[entity_def.name] = entity_def
return entity_registry
def get_sorted_entity_names(
entity_names: List[Tuple[str, EntityDefinition]],
) -> List[Tuple[str, List[str]]]:
"""
Sort entity names by category and priority for documentation generation.
This function organizes entities into a structured order for generating
documentation. Entities are grouped by category (CORE vs INTERNAL) and
within each category, sorted by priority and then alphabetically.
Business Logic:
- CORE entities are displayed first, followed by INTERNAL entities
- Within each category, entities with priority values are sorted first
- Priority entities are sorted by their priority value (lower numbers = higher priority)
- Non-priority entities are sorted alphabetically after priority entities
- Zero and negative priority values are treated as valid priorities
Args:
entity_names: List of tuples containing (entity_name, EntityDefinition)
Returns:
List of tuples containing (EntityCategory, List[str]) where:
- First tuple: (EntityCategory.CORE, sorted_core_entity_names)
- Second tuple: (EntityCategory.INTERNAL, sorted_internal_entity_names)
Example:
Input: [
("dataset", EntityDefinition(priority=2, category=CORE)),
("table", EntityDefinition(priority=None, category=CORE)),
("internal", EntityDefinition(priority=1, category=INTERNAL))
]
Output: [
(EntityCategory.CORE, ["dataset", "table"]),
(EntityCategory.INTERNAL, ["internal"])
]
"""
core_entities = [
(x, y) for (x, y) in entity_names if y.category == EntityCategory.CORE
]
priority_bearing_core_entities = [(x, y) for (x, y) in core_entities if y.priority]
priority_bearing_core_entities.sort(key=lambda t: t[1].priority)
priority_bearing_core_entities = [x for (x, y) in priority_bearing_core_entities]
non_priority_core_entities = [x for (x, y) in core_entities if not y.priority]
non_priority_core_entities.sort()
internal_entities = [
(x, y) for (x, y) in entity_names if y.category == EntityCategory.INTERNAL
]
priority_bearing_internal_entities = [
x for (x, y) in internal_entities if y.priority
]
non_priority_internal_entities = [
x for (x, y) in internal_entities if not y.priority
]
sorted_entities = [
(
EntityCategory.CORE,
priority_bearing_core_entities + non_priority_core_entities,
),
(
EntityCategory.INTERNAL,
priority_bearing_internal_entities + non_priority_internal_entities,
),
]
return sorted_entities
@click.command()
@click.argument("schemas_root", type=click.Path(exists=True), required=True)
@click.option("--registry", type=click.Path(exists=True), required=True)
@click.option("--generated-docs-dir", type=click.Path(exists=True), required=True)
@click.option("--server", type=str, required=False)
@click.option("--file", type=str, required=False)
@click.option(
"--dot", type=str, required=False, help="generate a dot file representing the graph"
)
@click.option("--png", type=str, required=False)
@click.option("--extra-docs", type=str, required=False)
@click.option(
"--lineage-output", type=str, required=False, help="generate lineage JSON file"
)
def generate( # noqa: C901
schemas_root: str,
registry: str,
generated_docs_dir: str,
server: Optional[str],
file: Optional[str],
dot: Optional[str],
png: Optional[str],
extra_docs: Optional[str],
lineage_output: Optional[str],
) -> None:
logger.info(f"server = {server}")
logger.info(f"file = {file}")
logger.info(f"dot = {dot}")
logger.info(f"png = {png}")
logger.info(f"lineage_output = {lineage_output}")
entity_extra_docs = {}
if extra_docs:
for path in glob.glob(f"{extra_docs}/**/*.md", recursive=True):
m = re.search("/docs/entities/(.*)/*.md", path)
if m:
entity_name = m.group(1)
with open(path, "r") as doc_file:
file_contents = doc_file.read()
entity_extra_docs[entity_name] = file_contents
# registry file
load_registry_file(registry)
# schema files
for schema_file in Path(schemas_root).glob("**/*.avsc"):
if (
schema_file.name in {"MetadataChangeEvent.avsc"}
or json.loads(schema_file.read_text()).get("Aspect") is not None
):
load_schema_file(str(schema_file))
if entity_extra_docs:
for entity_name in entity_extra_docs:
entity_registry[entity_name].doc_file_contents = entity_extra_docs[
entity_name
]
if lineage_output:
logger.info(f"Generating lineage JSON to {lineage_output}")
try:
lineage_data = extract_lineage_fields()
lineage_json = generate_lineage_json(lineage_data)
output_path = Path(lineage_output)
output_path.parent.mkdir(parents=True, exist_ok=True)
new_json_data = json.loads(lineage_json)
write_file = should_write_json_file(
output_path, new_json_data, "lineage file"
)
if write_file:
with open(output_path, "w") as f:
f.write(lineage_json)
logger.info(f"Successfully wrote lineage JSON to {lineage_output}")
except Exception as e:
logger.error(f"Failed to generate lineage JSON: {e}")
raise
# Create structured property for search field names first
logger.info("Creating structured property for search field names")
structured_property_mcps = create_search_field_name_property()
relationship_graph = RelationshipGraph()
entity_mcps = list(generate_stitched_record(relationship_graph))
# Combine MCPs with structured property first
mcps = structured_property_mcps + entity_mcps
shutil.rmtree(f"{generated_docs_dir}/entities", ignore_errors=True)
entity_names = [(x, entity_registry[x]) for x in generated_documentation]
sorted_entity_names = get_sorted_entity_names(entity_names)
index = 0
for _, sorted_entities in sorted_entity_names:
for entity_name in sorted_entities:
entity_dir = f"{generated_docs_dir}/entities/"
os.makedirs(entity_dir, exist_ok=True)
with open(f"{entity_dir}/{entity_name}.md", "w") as fp:
fp.write("---\n")
fp.write(f"sidebar_position: {index}\n")
fp.write("---\n")
fp.write(generated_documentation[entity_name])
index += 1
if file:
logger.info(f"Will write events to {file}")
Path(file).parent.mkdir(parents=True, exist_ok=True)
fileSink = FileSink(
PipelineContext(run_id="generated-metaModel"),
FileSinkConfig(filename=file),
)
for e in mcps:
fileSink.write_record_async(
RecordEnvelope(e, metadata={}), write_callback=NoopWriteCallback()
)
fileSink.close()
pipeline_config = {
"source": {
"type": "file",
"config": {"filename": file},
},
"sink": {
"type": "datahub-rest",
"config": {
"server": "${DATAHUB_SERVER:-http://localhost:8080}",
"token": "${DATAHUB_TOKEN:-}",
},
},
"run_id": "modeldoc-generated",
}
pipeline_file = Path(file).parent.absolute() / "pipeline.yml"
with open(pipeline_file, "w") as f:
json.dump(pipeline_config, f, indent=2)
logger.info(f"Wrote pipeline to {pipeline_file}")
if server:
logger.info(f"Will send events to {server}")
assert server.startswith("http://"), "server address must start with http://"
emitter = DatahubRestEmitter(gms_server=server)
emitter.test_connection()
for e in mcps:
emitter.emit(e)
if dot:
logger.info(f"Will write dot file to {dot}")
import pydot
graph = pydot.Dot("my_graph", graph_type="graph")
for node, adjacency in relationship_graph.map.items():
my_node = pydot.Node(
node,
label=node,
shape="box",
)
graph.add_node(my_node)
if adjacency.self_loop:
for relnship in adjacency.self_loop:
graph.add_edge(
pydot.Edge(
src=relnship.src, dst=relnship.dst, label=relnship.name
)
)
if adjacency.outgoing:
for relnship in adjacency.outgoing:
graph.add_edge(
pydot.Edge(
src=relnship.src, dst=relnship.dst, label=relnship.name
)
)
Path(dot).parent.mkdir(parents=True, exist_ok=True)
graph.write_raw(dot)
if png:
try:
graph.write_png(png)
except Exception as e:
logger.error(
"Failed to create png file. Do you have graphviz installed?"
)
raise e
if __name__ == "__main__":
logger.setLevel("INFO")
generate()