mirror of
https://github.com/datahub-project/datahub.git
synced 2025-08-10 10:17:58 +00:00
110 lines
35 KiB
HTML
110 lines
35 KiB
HTML
<!doctype html>
|
||
<html lang="en" dir="ltr" class="blog-wrapper blog-post-page plugin-blog plugin-id-default" data-has-hydrated="false">
|
||
<head>
|
||
<meta charset="UTF-8">
|
||
<meta name="generator" content="Docusaurus v2.4.3">
|
||
<title data-rh="true">Ensuring Data Freshness: Why It Matters and How to Achieve It | DataHub</title><meta data-rh="true" name="viewport" content="width=device-width,initial-scale=1"><meta data-rh="true" name="twitter:card" content="summary_large_image"><meta data-rh="true" property="og:url" content="https://docs.datahub.com/learn/data-freshness"><meta data-rh="true" name="docusaurus_locale" content="en"><meta data-rh="true" name="docusaurus_tag" content="default"><meta data-rh="true" name="docsearch:language" content="en"><meta data-rh="true" name="docsearch:docusaurus_tag" content="default"><meta data-rh="true" property="og:title" content="Ensuring Data Freshness: Why It Matters and How to Achieve It | DataHub"><meta data-rh="true" name="description" content="Explore the significance of maintaining up-to-date data, the challenges involved, and how our solutions can ensure your data remains fresh to meet SLAs."><meta data-rh="true" property="og:description" content="Explore the significance of maintaining up-to-date data, the challenges involved, and how our solutions can ensure your data remains fresh to meet SLAs."><meta data-rh="true" property="og:image" content="https://docs.datahub.com/img/learn/use-case-data-freshness.png"><meta data-rh="true" name="twitter:image" content="https://docs.datahub.com/img/learn/use-case-data-freshness.png"><meta data-rh="true" property="og:type" content="article"><meta data-rh="true" property="article:published_time" content="2024-06-03T01:00:00.000Z"><meta data-rh="true" property="article:tag" content="Data Freshness,Use Case,For Data Engineers"><link data-rh="true" rel="icon" href="/img/favicon.ico"><link data-rh="true" rel="canonical" href="https://docs.datahub.com/learn/data-freshness"><link data-rh="true" rel="alternate" href="https://docs.datahub.com/learn/data-freshness" hreflang="en"><link data-rh="true" rel="alternate" href="https://docs.datahub.com/learn/data-freshness" hreflang="x-default"><link data-rh="true" rel="preconnect" href="https://RK0UG797F3-dsn.algolia.net" crossorigin="anonymous"><link rel="alternate" type="application/rss+xml" href="/learn/rss.xml" title="DataHub RSS Feed">
|
||
<link rel="alternate" type="application/atom+xml" href="/learn/atom.xml" title="DataHub Atom Feed">
|
||
|
||
<link rel="preconnect" href="https://www.google-analytics.com">
|
||
<link rel="preconnect" href="https://www.googletagmanager.com">
|
||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-PKGVLETT4C"></script>
|
||
<script>function gtag(){dataLayer.push(arguments)}window.dataLayer=window.dataLayer||[],gtag("js",new Date),gtag("config","G-PKGVLETT4C",{})</script>
|
||
<link rel="preconnect" href="https://www.googletagmanager.com">
|
||
<script>window.dataLayer=window.dataLayer||[]</script>
|
||
<script>!function(e,t,a,n,g){e[n]=e[n]||[],e[n].push({"gtm.start":(new Date).getTime(),event:"gtm.js"});var m=t.getElementsByTagName(a)[0],r=t.createElement(a);r.async=!0,r.src="https://www.googletagmanager.com/gtm.js?id=GTM-5M8T9HNN",m.parentNode.insertBefore(r,m)}(window,document,"script","dataLayer")</script>
|
||
|
||
|
||
<link rel="search" type="application/opensearchdescription+xml" title="DataHub" href="/opensearch.xml">
|
||
|
||
|
||
|
||
|
||
<meta httpequiv="Content-Security-Policy" content="frame-ancestors 'self' https://*.acryl.io https://acryldata.io http://localhost:*">
|
||
<link rel="stylesheet" href="https://fonts.googleapis.com/css2?family=Manrope:wght@400;500;700&display=swap">
|
||
<script src="https://tools.luckyorange.com/core/lo.js?site-id=28ea8a38" async defer="defer"></script>
|
||
<script src="/scripts/rb2b.js" async defer="defer"></script>
|
||
<script src="https://app.revenuehero.io/scheduler.min.js"></script>
|
||
<script src="https://tag.clearbitscripts.com/v1/pk_2e321cabe30432a5c44c0424781aa35f/tags.js" referrerpolicy="strict-origin-when-cross-origin"></script>
|
||
<script src="/scripts/reo.js"></script>
|
||
<script id="runllm-widget-script" type="module" src="https://widget.runllm.com" crossorigin="true" runllm-name="DataHub" runllm-assistant-id="81" runllm-position="BOTTOM_RIGHT" runllm-keyboard-shortcut="Mod+j" runllm-preset="docusaurus" runllm-theme-color="#1890FF" runllm-brand-logo="https://docs.datahub.com/img/datahub-logo-color-mark.svg" runllm-community-url="https://datahub.com/slack" runllm-community-type="slack" runllm-disable-ask-a-person="true" async></script><link rel="stylesheet" href="/assets/css/styles.d8fe2eb8.css">
|
||
<link rel="preload" href="/assets/js/runtime~main.8ae4198a.js" as="script">
|
||
<link rel="preload" href="/assets/js/main.9d79f7e2.js" as="script">
|
||
</head>
|
||
<body class="navigation-with-keyboard">
|
||
<noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5M8T9HNN" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript>
|
||
|
||
<script>!function(){function t(t){document.documentElement.setAttribute("data-theme",t)}var e=function(){var t=null;try{t=new URLSearchParams(window.location.search).get("docusaurus-theme")}catch(t){}return t}()||function(){var t=null;try{t=localStorage.getItem("theme")}catch(t){}return t}();t(null!==e?e:"light")}(),document.documentElement.setAttribute("data-announcement-bar-initially-dismissed",function(){try{return"true"===localStorage.getItem("docusaurus.announcement.dismiss")}catch(t){}return!1}())</script><div id="__docusaurus">
|
||
<div role="region" aria-label="Skip to main content"><a class="skipToContent_fXgn" href="#__docusaurus_skipToContent_fallback">Skip to main content</a></div><div class="announcementBar_mb4j" style="background-color:transparent;color:#ffffff" role="banner"><div class="content_knG7 announcementBarContent_xLdY"><div class="shimmer-banner"><p>DataHub Secures $35 Million Series B</p><a href="https://datahub.com/news/series-b-announcement/" target="_blank" class="button"><div>Read the announcement<span> →</span></div></a></div></div></div><nav aria-label="Main" class="navbar navbar--fixed-top"><div class="navbar__inner"><div class="navbar__items"><button aria-label="Toggle navigation bar" aria-expanded="false" class="navbar__toggle clean-btn" type="button"><svg width="30" height="30" viewBox="0 0 30 30" aria-hidden="true"><path stroke="currentColor" stroke-linecap="round" stroke-miterlimit="10" stroke-width="2" d="M4 7h22M4 15h22M4 23h22"></path></svg></button><a href="https://datahub.com" target="_blank" rel="noopener noreferrer" class="navbar__brand"><div class="navbar__logo"><img src="/img/datahub-logo-color-light-horizontal.svg" alt="DataHub Logo" class="themedImage_ToTc themedImage--light_HNdA"><img src="/img/datahub-logo-color-dark-horizontal.svg" alt="DataHub Logo" class="themedImage_ToTc themedImage--dark_i4oU"></div></a><div class="navbar__item dropdown dropdown--hoverable"><a href="#" aria-haspopup="true" aria-expanded="false" role="button" class="navbar__link versionNavItem_cbn8">Next</a><ul class="dropdown__menu"><li><a class="dropdown__link" href="/docs/features">Next</a></li><li><a class="dropdown__link" href="/docs/1.1.0/features">1.1.0</a></li><li><hr class="dropdown-separator" style="margin: 0.4rem;"></li><li><div class="dropdown__link"><b>Archived versions</b></div></li><li>
|
||
<a class="dropdown__link" href="https://docs-website-t9sv4w3gr-acryldata.vercel.app/docs/features">1.0.0
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-t9sv4w3gr-acryldata.vercel.app/docs/0.15.0/features">0.15.0
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-8jkm4uler-acryldata.vercel.app/docs/0.14.1/features">0.14.1
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-eue2qafvn-acryldata.vercel.app/docs/features">0.14.0
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-psat3nzgi-acryldata.vercel.app/docs/features">0.13.1
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-lzxh86531-acryldata.vercel.app/docs/features">0.13.0
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-2uuxmgza2-acryldata.vercel.app/docs/features">0.12.1
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-irpoe2osc-acryldata.vercel.app/docs/features">0.11.0
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li><li>
|
||
<a class="dropdown__link" href="https://docs-website-1gv2yzn9d-acryldata.vercel.app/docs/features">0.10.5
|
||
<svg width="12" height="12" aria-hidden="true" viewBox="0 0 24 24"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg>
|
||
</a>
|
||
</li></ul></div></div><div class="navbar__items navbar__items--right"><a class="navbar__item navbar__link" href="/docs">Docs</a><a class="navbar__item navbar__link" href="/integrations">Integrations</a><div class="navbar__item dropdown dropdown--hoverable"><a href="#" aria-haspopup="true" aria-expanded="false" role="button" class="navbar__link">Learn</a><ul class="dropdown__menu dropdown__menu_Z8FC"><div class="wrapper_kp81"><div><a href="https://datahub.com/weekly-demo" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-join-slack.png" alt="Weekly Demo"></div><div class="title_c7DP">Weekly Demo</div></a></div><div><a href="https://datahub.com/use-cases" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-forum.png" alt="Use Cases"></div><div class="title_c7DP">Use Cases</div></a></div><div><a href="httpps://datahub.com/adoption-stories" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-events.png" alt="Adoption Stories"></div><div class="title_c7DP">Adoption Stories</div></a></div><div><a href="https://medium.com/datahub-project" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-champions.png" alt="Blog"></div><div class="title_c7DP">Blog</div></a></div><div><a href="https://www.youtube.com/channel/UC3qFQC5IiwR5fvWEqi_tJ5w" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-share-your-journey.png" alt="Youtube"></div><div class="title_c7DP">Youtube</div></a></div></div></ul></div><div class="navbar__item dropdown dropdown--hoverable"><a href="#" aria-haspopup="true" aria-expanded="false" role="button" class="navbar__link">Community</a><ul class="dropdown__menu dropdown__menu_Z8FC"><div class="wrapper_kp81"><div><a href="https://datahub.com/slack/" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-join-slack.png" alt="Join Slack"></div><div class="title_c7DP">Join Slack</div></a></div><div><a href="https://datahub.com/events" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-events.png" alt="Events"></div><div class="title_c7DP">Events</div></a></div><div><a href="https://datahub.com/champions/" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-champions.png" alt="Champions"></div><div class="title_c7DP">Champions</div></a></div><div><a href="https://datahub.com/share-your-journey/" target="_blank" rel="noopener noreferrer" class="card_BUD7"><div class="icon_BgHd"><img src="/img/icon-share-your-journey.png" alt="Share Your Journey"></div><div class="title_c7DP">Share Your Journey</div></a></div></div></ul></div><a href="https://datahub.com/products/why-datahub-cloud/" target="_blank" rel="noopener noreferrer" class="navbar__item navbar__link">
|
||
<style>
|
||
.cloud-cta {
|
||
color: var(--ifm-menu-color-active);
|
||
font-weight: 600;
|
||
background: linear-gradient(40deg, var(--ifm-menu-color-active), var(--ifm-menu-color-active));
|
||
background-size: 200% 100%;
|
||
-webkit-background-clip: text;
|
||
background-clip: text;
|
||
transition: background-image 0.3s ease;
|
||
}
|
||
.cloud-cta:hover {
|
||
color: transparent;
|
||
background: linear-gradient(40deg, var(--ifm-menu-color-active), #ff1493);
|
||
background-size: 200% 100%;
|
||
-webkit-background-clip: text;
|
||
background-clip: text;
|
||
animation: gradientShift 3s ease infinite;
|
||
}
|
||
@keyframes gradientShift {
|
||
0%, 100% { background-position: 0% 50%; }
|
||
50% { background-position: 100% 50%; }
|
||
}
|
||
</style>
|
||
<div class="cloud-cta">Get Cloud</div>
|
||
</a><a href="https://datahub.com/slack?utm_source=docs&utm_medium=header&utm_campaign=docs_header" target="_blank" rel="noopener noreferrer" class="navbar__item navbar__link">
|
||
<style>
|
||
.slack-logo:hover {
|
||
opacity: 0.8;
|
||
}
|
||
</style>
|
||
<img class="slack-logo" src="https://upload.wikimedia.org/wikipedia/commons/d/d5/Slack_icon_2019.svg" , alt="slack" , height="20px" style="margin: 10px 0 0 0;">
|
||
</a><div class="searchBox_ZlJk"><button type="button" class="DocSearch DocSearch-Button" aria-label="Search"><span class="DocSearch-Button-Container"><svg width="20" height="20" class="DocSearch-Search-Icon" viewBox="0 0 20 20" aria-hidden="true"><path d="M14.386 14.386l4.0877 4.0877-4.0877-4.0877c-2.9418 2.9419-7.7115 2.9419-10.6533 0-2.9419-2.9418-2.9419-7.7115 0-10.6533 2.9418-2.9419 7.7115-2.9419 10.6533 0 2.9419 2.9418 2.9419 7.7115 0 10.6533z" stroke="currentColor" fill="none" fill-rule="evenodd" stroke-linecap="round" stroke-linejoin="round"></path></svg><span class="DocSearch-Button-Placeholder">Search</span></span><span class="DocSearch-Button-Keys"></span></button></div></div></div><div role="presentation" class="navbar-sidebar__backdrop"></div></nav><div id="__docusaurus_skipToContent_fallback" class="main-wrapper mainWrapper_z2l0"><div class="container margin-vert--lg"><div class="row"><aside class="col col--3"><nav class="sidebar_re4s thin-scrollbar" aria-label="Blog recent posts navigation"><div class="sidebarItemTitle_pO2u margin-bottom--md">DataHub Learn</div><ul class="sidebarItemList_Yudw clean-list"><li class="sidebarItem__DBe"><a class="sidebarItemLink_mo7H" href="/learn/business-glossary">What is a Business Glossary and How to Standardize It</a></li><li class="sidebarItem__DBe"><a class="sidebarItemLink_mo7H" href="/learn/business-metric">What is a Business Metric and How to Define and Standardize Them</a></li><li class="sidebarItem__DBe"><a class="sidebarItemLink_mo7H" href="/learn/data-pipeline">What is a Data Pipeline and Why Should We Optimize It</a></li><li class="sidebarItem__DBe"><a class="sidebarItemLink_mo7H" href="/learn/data-mesh">What is a Data Mesh and How to Implement It in Your Organization</a></li><li class="sidebarItem__DBe"><a aria-current="page" class="sidebarItemLink_mo7H sidebarItemLinkActive_I1ZP" href="/learn/data-freshness">Ensuring Data Freshness: Why It Matters and How to Achieve It</a></li></ul></nav></aside><main class="col col--7" itemscope="" itemtype="http://schema.org/Blog"><article itemprop="blogPost" itemscope="" itemtype="http://schema.org/BlogPosting"><meta itemprop="description" content="Explore the significance of maintaining up-to-date data, the challenges involved, and how our solutions can ensure your data remains fresh to meet SLAs."><link itemprop="image" href="https://docs.datahub.com/img/learn/use-case-data-freshness.png"><header><h1 class="title_f1Hy" itemprop="headline">Ensuring Data Freshness: Why It Matters and How to Achieve It</h1><div class="container_mt6G margin-vert--md"><time datetime="2024-06-03T01:00:00.000Z" itemprop="datePublished">June 3, 2024</time> · <!-- -->6 min read</div></header><div id="__blog-post-container" class="markdown" itemprop="articleBody"><p>Explore the significance of maintaining up-to-date data, the challenges involved, and how our solutions can ensure your data remains fresh to meet SLAs.</p><h2 class="anchor anchorWithStickyNavbar_LWe7" id="introduction">Introduction<a href="#introduction" class="hash-link" aria-label="Direct link to Introduction" title="Direct link to Introduction"></a></h2><p>Have you ever experienced delays in delivering tables that or machine learning (ML) models that directly power customer experiences due to stale data? Ensuring timely data is crucial for maintaining the effectiveness and reliability of these mission-critical products. In this post, we'll explore the importance of data freshness, the challenges associated with it, and how DataHub can help you meet your data freshness SLAs consistently.</p><h2 class="anchor anchorWithStickyNavbar_LWe7" id="what-is-data-freshness">What is Data Freshness?<a href="#what-is-data-freshness" class="hash-link" aria-label="Direct link to What is Data Freshness?" title="Direct link to What is Data Freshness?"></a></h2><p>Data freshness refers to the timeliness and completeness of data used to build tables and ML models. Specifically, freshness can be measured by the difference in time between when some event <em>actually occurs</em> vs when that record of that event is reflected in a dataset or used to train an AI model. </p><p>To make things concrete, let’s imagine you run an e-commerce business selling t-shirts. When a user clicks the final “purchase” button to finalize a purchase, this interaction is recorded, eventually winding up in a consolidated “click_events” table on your data warehouse. Data freshness in this case could be measured by comparing when the actual click was performed against when the record of the click landed in the data warehouse. In reality, freshness can be measured against any reference point - e.g. event time, ingestion time, or something else - in relation to when a target table, model, or other data product is updated with new data. </p><p align="center"><img loading="lazy" width="70%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/blogs/data-freshness/freshness-concept.png" class="img_ev3q"><br><i style="color:grey">Data Freshness</i></p><p>Oftentimes, data pipelines are designed in order meet some well-defined availability latency, or data freshness SLA, with the specifics of this type of agreement dictating how and when the data pipeline is triggered to run. </p><p>In the modern data landscape, ensuring that data is up-to-date is vital for building high-quality data products, from reporting dashboards used to drive day-to-day company decisions to personalized and dynamic data- or AI-powered product experiences. </p><h2 class="anchor anchorWithStickyNavbar_LWe7" id="why-data-freshness-matters">Why Data Freshness Matters<a href="#why-data-freshness-matters" class="hash-link" aria-label="Direct link to Why Data Freshness Matters" title="Direct link to Why Data Freshness Matters"></a></h2><p>For many organizations, fresh data is more than a ‘nice to have’. </p><p>Mission-critical ML models, like those used for price prediction or fraud detection, depend heavily on fresh data to make accurate predictions. Delays in updating these models can lead to lost revenue and damage to your company's reputation.</p><p>Customer-facing data products, for example recommendation features, also need timely updates to ensure that customers receive the most recent and relevant information personalized to them. Delays in data freshness can result in customer frustration, user churn, and loss of trust.</p><h3 class="anchor anchorWithStickyNavbar_LWe7" id="key-considerations-for-your-organization">Key Considerations for Your Organization<a href="#key-considerations-for-your-organization" class="hash-link" aria-label="Direct link to Key Considerations for Your Organization" title="Direct link to Key Considerations for Your Organization"></a></h3><p><strong>Critical Data and ML Models:</strong></p><p>Can you recall examples when your organization faced challenges in maintaining the timeliness of mission-critical datasets and ML models? If your organization relies on data to deliver concrete product experiences, compliance auditing, or for making high-quality day-to-day decision, then stale data can significantly impact revenue and customer satisfaction. Consider identifying which datasets and models are most critical to your operations and quantifying the business impact of delays.</p><p><strong>Impact Identification and Response:</strong></p><p>Because data is highly interconnected, delays in data freshness can lead to cascading problems, particularly of your organization lacks a robust system for identifying and resolving such problems. How does your organization prioritize and manage such incidents? Processes for quickly identifying and resolving root causes are essential for minimizing negative impacts on revenue and reputation.</p><p><strong>Automated Freshness Monitoring:</strong></p><p>If data freshness problems often go undetected for long periods of time, there may be opportunities to automate the detection of such problems for core tables and AI models so that your team is first to know when something goes wrong.</p><h2 class="anchor anchorWithStickyNavbar_LWe7" id="how-to-ensure-data-freshness">How to Ensure Data Freshness<a href="#how-to-ensure-data-freshness" class="hash-link" aria-label="Direct link to How to Ensure Data Freshness" title="Direct link to How to Ensure Data Freshness"></a></h2><p>Ensuring data freshness involves several best practices and strategies. Here’s how you can achieve it:</p><h3 class="anchor anchorWithStickyNavbar_LWe7" id="best-practices-and-strategies">Best Practices and Strategies<a href="#best-practices-and-strategies" class="hash-link" aria-label="Direct link to Best Practices and Strategies" title="Direct link to Best Practices and Strategies"></a></h3><p><strong>Data Lineage Tracking:</strong></p><p>Utilize data lineage tracking to establish a bird’s eye view of data flowing through your systems - a picture of the supply chain of data within your organization. This helps in pinpointing hotspots where delays occur and understanding the full impact of such delays to coordinate an effective response.</p><p><strong>Automation and Monitoring:</strong></p><p>Implement automated freshness monitoring to detect and address issues promptly. This reduces the need for manual debugging and allows for quicker response times. It can also help you to establish peace-of-mind by targeting your most impactful assets.</p><p><strong>Incident Management:</strong></p><p>Establish clear protocols for incident management to prioritize and resolve data freshness issues effectively. This includes setting up notifications and alerts for timely intervention, and a broader communication strategy to involve all stakeholders (even those downstream) in the case of an issue.</p><h3 class="anchor anchorWithStickyNavbar_LWe7" id="alternatives">Alternatives<a href="#alternatives" class="hash-link" aria-label="Direct link to Alternatives" title="Direct link to Alternatives"></a></h3><p>While manual investigation and communication using tools like Slack can help triage issues, they often result in time-consuming, inefficient, and informal processes for addressing data quality issues related to freshness, ultimately leading to lower quality outcomes. Automated freshness incident detection and structured incident management via dedicated data monitoring tools can help improve the situation by providing a single place for detecting, communicating, and coordinating to resolve data freshness issues. </p><h3 class="anchor anchorWithStickyNavbar_LWe7" id="how-datahub-can-help">How DataHub Can Help<a href="#how-datahub-can-help" class="hash-link" aria-label="Direct link to How DataHub Can Help" title="Direct link to How DataHub Can Help"></a></h3><p>DataHub offers comprehensive features designed to tackle data freshness challenges:</p><p><strong><a href="https://docs.datahub.com/docs/features/feature-guides/lineage" target="_blank" rel="noopener noreferrer">End-To-End Data Lineage</a> and <a href="https://docs.datahub.com/docs/act-on-metadata/impact-analysis" target="_blank" rel="noopener noreferrer">Impact Analysis</a>:</strong> Easily track the flow of data through your organization to identify, debug, and resolve delays quickly.</p><p align="center"><img loading="lazy" width="80%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/blogs/data-freshness/lineage.png" class="img_ev3q"><br><i style="color:grey">Data Lineage</i></p><p><strong>Freshness Monitoring & Alerting:</strong> Automatically detect and alert when data freshness issues occur, to ensure timely updates by proactively monitoring key datasets for updates. Check out <a href="https://docs.datahub.com/docs/managed-datahub/observe/assertions" target="_blank" rel="noopener noreferrer">Assertions</a> and <a href="https://docs.datahub.com/docs/managed-datahub/observe/freshness-assertions" target="_blank" rel="noopener noreferrer">Freshness Assertions</a>, Available in <strong>DataHub Cloud Only.</strong></p><p align="center"><img loading="lazy" width="80%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/blogs/data-freshness/freshness-assertions.png" class="img_ev3q"><br><i style="color:grey">Freshness Assertions Results</i></p><p align="center"><img loading="lazy" width="80%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/blogs/data-freshness/smart-assertions.png" class="img_ev3q"><br><i style="color:grey">Smart assertions checks for changes on a cadence based on the Table history, by default using the Audit Log.</i></p><p><strong><a href="https://docs.datahub.com/docs/incidents/incidents" target="_blank" rel="noopener noreferrer">Incident Management</a></strong> : Centralize data incident management and begin to effectively triage, prioritize, communicate and resolve data freshness issues to all relevant stakeholders. Check out <a href="https://docs.datahub.com/docs/managed-datahub/subscription-and-notification" target="_blank" rel="noopener noreferrer">subscription & notification</a> features as well.</p><p align="center"><img loading="lazy" width="80%" src="https://raw.githubusercontent.com/datahub-project/static-assets/main/imgs/blogs/data-freshness/incidents.png" class="img_ev3q"></p><p>By implementing these solutions, you can ensure that your key datasets and models are always up-to-date, maintaining their relevancy, accuracy, and reliability for critical use cases within your organization. </p><h2 class="anchor anchorWithStickyNavbar_LWe7" id="conclusion">Conclusion<a href="#conclusion" class="hash-link" aria-label="Direct link to Conclusion" title="Direct link to Conclusion"></a></h2><p>Ensuring data freshness is essential for the performance and reliability of critical datasets and AI/ML models. By understanding the importance of data freshness and implementing best practices and automated solutions, you can effectively manage and mitigate delays, thereby protecting your revenue and reputation. DataHub is designed to help you achieve this, providing the tools and features necessary to keep your data fresh and your operations running smoothly.</p></div><footer class="row docusaurus-mt-lg blogPostFooterDetailsFull_mRVl"><div class="col"><b>Tags:</b><ul class="tags_jXut padding--none margin-left--sm"><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/learn/tags/data-freshness">Data Freshness</a></li><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/learn/tags/use-case">Use Case</a></li><li class="tag_QGVx"><a class="tag_zVej tagRegular_sFm0" href="/learn/tags/for-data-engineers">For Data Engineers</a></li></ul></div></footer></article><nav class="pagination-nav docusaurus-mt-lg" aria-label="Blog post page navigation"><a class="pagination-nav__link pagination-nav__link--prev" href="/learn/data-mesh"><div class="pagination-nav__sublabel">Newer Post</div><div class="pagination-nav__label">What is a Data Mesh and How to Implement It in Your Organization</div></a></nav></main><div class="col col--2"><div class="tableOfContents_bqdL thin-scrollbar"><ul class="table-of-contents table-of-contents__left-border"><li><a href="#introduction" class="table-of-contents__link toc-highlight">Introduction</a></li><li><a href="#what-is-data-freshness" class="table-of-contents__link toc-highlight">What is Data Freshness?</a></li><li><a href="#why-data-freshness-matters" class="table-of-contents__link toc-highlight">Why Data Freshness Matters</a><ul><li><a href="#key-considerations-for-your-organization" class="table-of-contents__link toc-highlight">Key Considerations for Your Organization</a></li></ul></li><li><a href="#how-to-ensure-data-freshness" class="table-of-contents__link toc-highlight">How to Ensure Data Freshness</a><ul><li><a href="#best-practices-and-strategies" class="table-of-contents__link toc-highlight">Best Practices and Strategies</a></li><li><a href="#alternatives" class="table-of-contents__link toc-highlight">Alternatives</a></li><li><a href="#how-datahub-can-help" class="table-of-contents__link toc-highlight">How DataHub Can Help</a></li></ul></li><li><a href="#conclusion" class="table-of-contents__link toc-highlight">Conclusion</a></li></ul></div></div></div></div></div><footer class="footer footer--dark"><div class="container container-fluid"><div class="row footer__links"><div class="col footer__col"><div class="footer__title">Docs</div><ul class="footer__items clean-list"><li class="footer__item"><a class="footer__link-item" href="/docs/">Introduction</a></li><li class="footer__item"><a class="footer__link-item" href="/docs/quickstart">Quickstart</a></li></ul></div><div class="col footer__col"><div class="footer__title">Community</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://datahub.com/slack" target="_blank" rel="noopener noreferrer" class="footer__link-item">Slack<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://www.youtube.com/channel/UC3qFQC5IiwR5fvWEqi_tJ5w" target="_blank" rel="noopener noreferrer" class="footer__link-item">YouTube<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://medium.com/datahub-project" target="_blank" rel="noopener noreferrer" class="footer__link-item">Blog<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a class="footer__link-item" href="/docs/townhalls">Town Halls</a></li><li class="footer__item"><a href="https://datahub.com/adoption-stories/" target="_blank" rel="noopener noreferrer" class="footer__link-item">Adoption<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div><div class="col footer__col"><div class="footer__title">More</div><ul class="footer__items clean-list"><li class="footer__item"><a href="https://demo.datahub.com/" target="_blank" rel="noopener noreferrer" class="footer__link-item">Demo</a></li><li class="footer__item"><a href="https://feature-requests.datahubproject.io/roadmap" target="_blank" rel="noopener noreferrer" class="footer__link-item">Roadmap<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a class="footer__link-item" href="/docs/contributing">Contributing</a></li><li class="footer__item"><a href="https://github.com/datahub-project/datahub" target="_blank" rel="noopener noreferrer" class="footer__link-item">GitHub<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li><li class="footer__item"><a href="https://feature-requests.datahubproject.io/" target="_blank" rel="noopener noreferrer" class="footer__link-item">Feature Requests<svg width="13.5" height="13.5" aria-hidden="true" viewBox="0 0 24 24" class="iconExternalLink_nPIU"><path fill="currentColor" d="M21 13v10h-21v-19h12v2h-10v15h17v-8h2zm3-12h-10.988l4.035 4-6.977 7.07 2.828 2.828 6.977-7.07 4.125 4.172v-11z"></path></svg></a></li></ul></div></div><div class="footer__bottom text--center"><div class="footer__copyright">Copyright © 2015-2025 DataHub Project Authors.</div></div></div></footer></div>
|
||
<script src="/assets/js/runtime~main.8ae4198a.js"></script>
|
||
<script src="/assets/js/main.9d79f7e2.js"></script>
|
||
</body>
|
||
</html> |