411 lines
14 KiB
Python

import sys
import pytest
if sys.version_info < (3, 7):
pytest.skip("iceberg not available for python < 3.7", allow_module_level=True)
from typing import Any, Optional
from iceberg.api import types as IcebergTypes
from iceberg.api.types.types import NestedField
from datahub.configuration.common import ConfigurationError
from datahub.ingestion.api.common import PipelineContext
from datahub.ingestion.source.azure.azure_common import AdlsSourceConfig
from datahub.ingestion.source.iceberg.iceberg import IcebergSource, IcebergSourceConfig
from datahub.metadata.com.linkedin.pegasus2avro.schema import ArrayType, SchemaField
from datahub.metadata.schema_classes import (
ArrayTypeClass,
BooleanTypeClass,
BytesTypeClass,
DateTypeClass,
FixedTypeClass,
NumberTypeClass,
RecordTypeClass,
StringTypeClass,
TimeTypeClass,
)
def with_iceberg_source() -> IcebergSource:
adls: AdlsSourceConfig = AdlsSourceConfig(
account_name="test", account_key="test", container_name="test"
)
return IcebergSource(
ctx=PipelineContext(run_id="iceberg-source-test"),
config=IcebergSourceConfig(adls=adls),
)
def assert_field(
schema_field: SchemaField,
expected_description: Optional[str],
expected_nullable: bool,
expected_type: Any,
) -> None:
assert (
schema_field.description == expected_description
), f"Field description '{schema_field.description}' is different from expected description '{expected_description}'"
assert (
schema_field.nullable == expected_nullable
), f"Field nullable '{schema_field.nullable}' is different from expected nullable '{expected_nullable}'"
assert isinstance(
schema_field.type.type, expected_type
), f"Field type {schema_field.type.type} is different from expected type {expected_type}"
def test_adls_config_no_credential():
"""
Test when no ADLS credential information is provided (SAS token, Account key).
"""
with pytest.raises(ConfigurationError):
AdlsSourceConfig(account_name="test", container_name="test")
def test_adls_config_with_sas_credential():
"""
Test when a SAS token is used as an ADLS credential.
"""
AdlsSourceConfig(account_name="test", sas_token="test", container_name="test")
def test_adls_config_with_key_credential():
"""
Test when an account key is used as an ADLS credential.
"""
AdlsSourceConfig(account_name="test", account_key="test", container_name="test")
def test_adls_config_with_client_secret_credential():
"""
Test when a client secret is used as an ADLS credential.
"""
AdlsSourceConfig(
account_name="test",
tenant_id="test",
client_id="test",
client_secret="test",
container_name="test",
)
# Test when tenant_id is missing
with pytest.raises(ConfigurationError):
AdlsSourceConfig(
account_name="test",
client_id="test",
client_secret="test",
container_name="test",
)
# Test when client_id is missing
with pytest.raises(ConfigurationError):
AdlsSourceConfig(
account_name="test",
tenant_id="test",
client_secret="test",
container_name="test",
)
# Test when client_secret is missing
with pytest.raises(ConfigurationError):
AdlsSourceConfig(
account_name="test",
tenant_id="test",
client_id="test",
container_name="test",
)
def test_config_for_tests():
"""
Test valid iceberg source that will be used in unit tests.
"""
with_iceberg_source()
def test_config_no_filesystem():
"""
Test when a SAS token is used as an ADLS credential.
"""
with pytest.raises(ConfigurationError):
IcebergSource(
ctx=PipelineContext(run_id="iceberg-source-test"),
config=IcebergSourceConfig(),
)
def test_config_multiple_filesystems():
"""
Test when more than 1 filesystem is configured.
"""
with pytest.raises(ConfigurationError):
adls: AdlsSourceConfig = AdlsSourceConfig(
account_name="test", container_name="test"
)
IcebergSource(
ctx=PipelineContext(run_id="iceberg-source-test"),
config=IcebergSourceConfig(adls=adls, localfs="/tmp"),
)
@pytest.mark.parametrize(
"iceberg_type, expected_schema_field_type",
[
(IcebergTypes.BinaryType.get(), BytesTypeClass),
(IcebergTypes.BooleanType.get(), BooleanTypeClass),
(IcebergTypes.DateType.get(), DateTypeClass),
(
IcebergTypes.DecimalType.of(3, 2),
NumberTypeClass,
),
(IcebergTypes.DoubleType.get(), NumberTypeClass),
(IcebergTypes.FixedType.of_length(4), FixedTypeClass),
(IcebergTypes.FloatType.get(), NumberTypeClass),
(IcebergTypes.IntegerType.get(), NumberTypeClass),
(IcebergTypes.LongType.get(), NumberTypeClass),
(IcebergTypes.StringType.get(), StringTypeClass),
(
IcebergTypes.TimestampType.with_timezone(),
TimeTypeClass,
),
(
IcebergTypes.TimestampType.without_timezone(),
TimeTypeClass,
),
(IcebergTypes.TimeType.get(), TimeTypeClass),
(
IcebergTypes.UUIDType.get(),
StringTypeClass,
),
],
)
def test_iceberg_primitive_type_to_schema_field(
iceberg_type: IcebergTypes.PrimitiveType, expected_schema_field_type: Any
) -> None:
"""
Test converting a primitive typed Iceberg field to a SchemaField
"""
iceberg_source_instance = with_iceberg_source()
for column in [
NestedField.required(
1, "required_field", iceberg_type, "required field documentation"
),
NestedField.optional(
1, "optional_field", iceberg_type, "optional field documentation"
),
]:
schema_fields = iceberg_source_instance._get_schema_fields_for_column(column)
assert (
len(schema_fields) == 1
), f"Expected 1 field, but got {len(schema_fields)}"
assert_field(
schema_fields[0], column.doc, column.is_optional, expected_schema_field_type
)
@pytest.mark.parametrize(
"iceberg_type, expected_array_nested_type",
[
(IcebergTypes.BinaryType.get(), "bytes"),
(IcebergTypes.BooleanType.get(), "boolean"),
(IcebergTypes.DateType.get(), "date"),
(
IcebergTypes.DecimalType.of(3, 2),
"decimal",
),
(IcebergTypes.DoubleType.get(), "double"),
(IcebergTypes.FixedType.of_length(4), "fixed"),
(IcebergTypes.FloatType.get(), "float"),
(IcebergTypes.IntegerType.get(), "int"),
(IcebergTypes.LongType.get(), "long"),
(IcebergTypes.StringType.get(), "string"),
(
IcebergTypes.TimestampType.with_timezone(),
"timestamp-micros",
),
(
IcebergTypes.TimestampType.without_timezone(),
"timestamp-micros",
),
(IcebergTypes.TimeType.get(), "time-micros"),
(
IcebergTypes.UUIDType.get(),
"uuid",
),
],
)
def test_iceberg_list_to_schema_field(
iceberg_type: IcebergTypes.PrimitiveType, expected_array_nested_type: Any
) -> None:
"""
Test converting a list typed Iceberg field to an ArrayType SchemaField, including the list nested type.
"""
list_column: NestedField = NestedField.required(
1,
"listField",
IcebergTypes.ListType.of_required(2, iceberg_type),
"documentation",
)
iceberg_source_instance = with_iceberg_source()
schema_fields = iceberg_source_instance._get_schema_fields_for_column(list_column)
assert len(schema_fields) == 1, f"Expected 1 field, but got {len(schema_fields)}"
assert_field(
schema_fields[0], list_column.doc, list_column.is_optional, ArrayTypeClass
)
assert isinstance(
schema_fields[0].type.type, ArrayType
), f"Field type {schema_fields[0].type.type} was expected to be {ArrayType}"
arrayType: ArrayType = schema_fields[0].type.type
assert arrayType.nestedType == [
expected_array_nested_type
], f"List Field nested type {arrayType.nestedType} was expected to be {expected_array_nested_type}"
@pytest.mark.parametrize(
"iceberg_type, expected_map_type",
[
(IcebergTypes.BinaryType.get(), BytesTypeClass),
(IcebergTypes.BooleanType.get(), BooleanTypeClass),
(IcebergTypes.DateType.get(), DateTypeClass),
(
IcebergTypes.DecimalType.of(3, 2),
NumberTypeClass,
),
(IcebergTypes.DoubleType.get(), NumberTypeClass),
(IcebergTypes.FixedType.of_length(4), FixedTypeClass),
(IcebergTypes.FloatType.get(), NumberTypeClass),
(IcebergTypes.IntegerType.get(), NumberTypeClass),
(IcebergTypes.LongType.get(), NumberTypeClass),
(IcebergTypes.StringType.get(), StringTypeClass),
(
IcebergTypes.TimestampType.with_timezone(),
TimeTypeClass,
),
(
IcebergTypes.TimestampType.without_timezone(),
TimeTypeClass,
),
(IcebergTypes.TimeType.get(), TimeTypeClass),
(
IcebergTypes.UUIDType.get(),
StringTypeClass,
),
],
)
def test_iceberg_map_to_schema_field(
iceberg_type: IcebergTypes.PrimitiveType, expected_map_type: Any
) -> None:
"""
Test converting a map typed Iceberg field to a MapType SchemaField, where the key is the same type as the value.
"""
map_column: NestedField = NestedField.required(
1,
"mapField",
IcebergTypes.MapType.of_required(11, 12, iceberg_type, iceberg_type),
"documentation",
)
iceberg_source_instance = with_iceberg_source()
schema_fields = iceberg_source_instance._get_schema_fields_for_column(map_column)
# Converting an Iceberg Map type will be done by creating an array of struct(key, value) records.
# The first field will be the array.
assert len(schema_fields) == 3, f"Expected 3 fields, but got {len(schema_fields)}"
assert_field(
schema_fields[0], map_column.doc, map_column.is_optional, ArrayTypeClass
)
# The second field will be the key type
assert_field(schema_fields[1], None, False, expected_map_type)
# The third field will be the value type
assert_field(schema_fields[2], None, True, expected_map_type)
@pytest.mark.parametrize(
"iceberg_type, expected_schema_field_type",
[
(IcebergTypes.BinaryType.get(), BytesTypeClass),
(IcebergTypes.BooleanType.get(), BooleanTypeClass),
(IcebergTypes.DateType.get(), DateTypeClass),
(
IcebergTypes.DecimalType.of(3, 2),
NumberTypeClass,
),
(IcebergTypes.DoubleType.get(), NumberTypeClass),
(IcebergTypes.FixedType.of_length(4), FixedTypeClass),
(IcebergTypes.FloatType.get(), NumberTypeClass),
(IcebergTypes.IntegerType.get(), NumberTypeClass),
(IcebergTypes.LongType.get(), NumberTypeClass),
(IcebergTypes.StringType.get(), StringTypeClass),
(
IcebergTypes.TimestampType.with_timezone(),
TimeTypeClass,
),
(
IcebergTypes.TimestampType.without_timezone(),
TimeTypeClass,
),
(IcebergTypes.TimeType.get(), TimeTypeClass),
(
IcebergTypes.UUIDType.get(),
StringTypeClass,
),
],
)
def test_iceberg_struct_to_schema_field(
iceberg_type: IcebergTypes.PrimitiveType, expected_schema_field_type: Any
) -> None:
"""
Test converting a struct typed Iceberg field to a RecordType SchemaField.
"""
field1: NestedField = NestedField.required(
11, "field1", iceberg_type, "field documentation"
)
struct_column: NestedField = NestedField.required(
1, "structField", IcebergTypes.StructType.of([field1]), "struct documentation"
)
iceberg_source_instance = with_iceberg_source()
schema_fields = iceberg_source_instance._get_schema_fields_for_column(struct_column)
assert len(schema_fields) == 2, f"Expected 2 fields, but got {len(schema_fields)}"
assert_field(
schema_fields[0], struct_column.doc, struct_column.is_optional, RecordTypeClass
)
assert_field(
schema_fields[1], field1.doc, field1.is_optional, expected_schema_field_type
)
def test_avro_decimal_bytes_nullable():
"""
The following test exposes a problem with decimal (bytes) not preserving extra attributes like _nullable. Decimal (fixed) and Boolean for example do.
NOTE: This bug was by-passed by mapping the Decimal type to fixed instead of bytes.
"""
import avro.schema
decimal_avro_schema_string = """{"type": "record", "name": "__struct_", "fields": [{"type": {"type": "bytes", "precision": 3, "scale": 2, "logicalType": "decimal", "native_data_type": "decimal(3, 2)", "_nullable": false}, "name": "required_field", "doc": "required field documentation"}]}"""
decimal_avro_schema = avro.schema.parse(decimal_avro_schema_string)
print("\nDecimal (bytes)")
print(
f"Original avro schema string: {decimal_avro_schema_string}"
)
print(f"After avro parsing, _nullable attribute is missing: {decimal_avro_schema}")
decimal_fixed_avro_schema_string = """{"type": "record", "name": "__struct_", "fields": [{"type": {"type": "fixed", "logicalType": "decimal", "precision": 3, "scale": 2, "native_data_type": "decimal(3, 2)", "_nullable": false, "name": "bogusName", "size": 16}, "name": "required_field", "doc": "required field documentation"}]}"""
decimal_fixed_avro_schema = avro.schema.parse(decimal_fixed_avro_schema_string)
print("\nDecimal (fixed)")
print(
f"Original avro schema string: {decimal_fixed_avro_schema_string}"
)
print(
f"After avro parsing, _nullable attribute is preserved: {decimal_fixed_avro_schema}"
)
boolean_avro_schema_string = """{"type": "record", "name": "__struct_", "fields": [{"type": {"type": "boolean", "native_data_type": "boolean", "_nullable": false}, "name": "required_field", "doc": "required field documentation"}]}"""
boolean_avro_schema = avro.schema.parse(boolean_avro_schema_string)
print("\nBoolean")
print(
f"Original avro schema string: {boolean_avro_schema_string}"
)
print(
f"After avro parsing, _nullable attribute is preserved: {boolean_avro_schema}"
)