2017-09-05 17:01:21 -07:00

251 lines
11 KiB
Python

#
# Copyright 2015 LinkedIn Corp. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#
import json
import os
import sys
from com.ziclix.python.sql import zxJDBC
from metadata.etl.dataset.hive import HiveViewDependency
from org.slf4j import LoggerFactory
from wherehows.common import Constant
from wherehows.common.schemas import DatasetSchemaRecord, DatasetFieldRecord, HiveDependencyInstanceRecord, \
DatasetInstanceRecord
from wherehows.common.writers import FileWriter
import FileUtil
from AvroColumnParser import AvroColumnParser
from HiveColumnParser import HiveColumnParser
from HiveExtract import TableInfo
class HiveTransform:
def __init__(self):
self.logger = LoggerFactory.getLogger('jython script : ' + self.__class__.__name__)
# connection
username = args[Constant.HIVE_METASTORE_USERNAME]
password = args[Constant.HIVE_METASTORE_PASSWORD]
jdbc_driver = args[Constant.HIVE_METASTORE_JDBC_DRIVER]
jdbc_url = args[Constant.HIVE_METASTORE_JDBC_URL]
self.conn_hms = zxJDBC.connect(jdbc_url, username, password, jdbc_driver)
self.curs = self.conn_hms.cursor()
# variable
self.dataset_dict = {}
def transform(self, input, hive_instance, hive_metadata, hive_field_metadata, view_dependency):
"""
convert from json to csv
:param input: input json file
:param hive_instance: output data file for hive instance
:param hive_metadata: output data file for hive table metadata
:param hive_field_metadata: output data file for hive field metadata
:return:
"""
all_data = []
with open(input) as input_file:
for line in input_file:
all_data.append(json.loads(line))
dataset_idx = -1
instance_file_writer = FileWriter(hive_instance)
schema_file_writer = FileWriter(hive_metadata)
field_file_writer = FileWriter(hive_field_metadata)
dependency_file_writer = FileWriter(view_dependency)
depends_sql = """
SELECT d.NAME DB_NAME, case when t.TBL_NAME regexp '_[0-9]+_[0-9]+_[0-9]+$'
then concat(substring(t.TBL_NAME, 1, length(t.TBL_NAME) - length(substring_index(t.TBL_NAME, '_', -3)) - 1),'_{version}')
else t.TBL_NAME
end dataset_name,
concat('/', d.NAME, '/', t.TBL_NAME) object_name,
case when (d.NAME like '%\_mp' or d.NAME like '%\_mp\_versioned') and d.NAME not like 'dalitest%' and t.TBL_TYPE = 'VIRTUAL_VIEW'
then 'dalids'
else 'hive'
end object_type,
case when (d.NAME like '%\_mp' or d.NAME like '%\_mp\_versioned') and d.NAME not like 'dalitest%' and t.TBL_TYPE = 'VIRTUAL_VIEW'
then 'View'
else
case when LOCATE('view', LOWER(t.TBL_TYPE)) > 0 then 'View'
when LOCATE('index', LOWER(t.TBL_TYPE)) > 0 then 'Index'
else 'Table'
end
end object_sub_type,
case when (d.NAME like '%\_mp' or d.NAME like '%\_mp\_versioned') and t.TBL_TYPE = 'VIRTUAL_VIEW'
then 'dalids'
else 'hive'
end prefix
FROM TBLS t JOIN DBS d on t.DB_ID = d.DB_ID
WHERE d.NAME = '{db_name}' and t.TBL_NAME = '{table_name}'
"""
# one db info : 'type', 'database', 'tables'
# one table info : required : 'name' , 'type', 'serializationFormat' ,'createTime', 'DB_ID', 'TBL_ID', 'SD_ID'
# optional : 'schemaLiteral', 'schemaUrl', 'fieldDelimiter', 'fieldList'
for one_db_info in all_data:
i = 0
for table in one_db_info['tables']:
i += 1
schema_json = {}
prop_json = {} # set the prop json
for prop_name in TableInfo.optional_prop:
if prop_name in table and table[prop_name] is not None:
prop_json[prop_name] = table[prop_name]
view_expanded_text = ''
if TableInfo.view_expended_text in prop_json:
view_expanded_text = prop_json[TableInfo.view_expended_text]
text = prop_json[TableInfo.view_expended_text].replace('`', '') # this will be fixed after switching to Hive AST
array = []
try:
array = HiveViewDependency.getViewDependency(text)
except:
self.logger.error("HiveViewDependency.getViewDependency(%s) failed!" % (table['name']))
l = []
for a in array:
l.append(a)
names = str(a).split('.')
if names and len(names) >= 2:
db_name = names[0].lower()
table_name = names[1].lower()
if db_name and table_name:
self.curs.execute(depends_sql.format(db_name=db_name, table_name=table_name, version='{version}'))
rows = self.curs.fetchall()
self.conn_hms.commit()
if rows and len(rows) > 0:
for row_index, row_value in enumerate(rows):
dependent_record = HiveDependencyInstanceRecord(
one_db_info['type'],
table['type'],
"/%s/%s" % (one_db_info['database'], table['name']),
'dalids:///' + one_db_info['database'] + '/' + table['dataset_name']
if one_db_info['type'].lower() == 'dalids'
else 'hive:///' + one_db_info['database'] + '/' + table['dataset_name'],
'depends on',
'Y',
row_value[3],
row_value[4],
row_value[2],
row_value[5] + ':///' + row_value[0] + '/' + row_value[1], '')
dependency_file_writer.append(dependent_record)
prop_json['view_depends_on'] = l
dependency_file_writer.flush()
# process either schema
flds = {}
field_detail_list = []
if TableInfo.schema_literal in table and \
table[TableInfo.schema_literal] is not None and \
table[TableInfo.schema_literal].startswith('{'):
sort_id = 0
urn = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
self.logger.info("Getting schema literal for: %s" % (urn))
try:
schema_data = json.loads(table[TableInfo.schema_literal])
schema_json = schema_data
acp = AvroColumnParser(schema_data, urn = urn)
result = acp.get_column_list_result()
field_detail_list += result
except ValueError:
self.logger.error("Schema Literal JSON error for table: " + str(table))
elif TableInfo.field_list in table:
# Convert to avro
uri = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
if one_db_info['type'].lower() == 'dalids':
uri = "dalids:///%s/%s" % (one_db_info['database'], table['dataset_name'])
else:
uri = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
self.logger.info("Getting column definition for: %s" % (uri))
try:
hcp = HiveColumnParser(table, urn = uri)
schema_json = {'fields' : hcp.column_type_dict['fields'], 'type' : 'record', 'name' : table['name'], 'uri' : uri}
field_detail_list += hcp.column_type_list
except:
self.logger.error("HiveColumnParser(%s) failed!" % (uri))
schema_json = {'fields' : {}, 'type' : 'record', 'name' : table['name'], 'uri' : uri}
if one_db_info['type'].lower() == 'dalids':
dataset_urn = "dalids:///%s/%s" % (one_db_info['database'], table['dataset_name'])
else:
dataset_urn = "hive:///%s/%s" % (one_db_info['database'], table['dataset_name'])
dataset_instance_record = DatasetInstanceRecord('dalids:///' + one_db_info['database'] + '/' + table['name']
if one_db_info['type'].lower() == 'dalids'
else 'hive:///' + one_db_info['database'] + '/' + table['name'],
'grid',
'',
'',
'*',
True,
table['native_name'],
table['logical_name'],
table['version'],
table['create_time'],
json.dumps(schema_json),
json.dumps(view_expanded_text),
dataset_urn)
instance_file_writer.append(dataset_instance_record)
if dataset_urn not in self.dataset_dict:
dataset_scehma_record = DatasetSchemaRecord(table['dataset_name'], json.dumps(schema_json),
json.dumps(prop_json),
json.dumps(flds), dataset_urn, 'Hive', one_db_info['type'],
table['type'], '',
table.get(TableInfo.create_time),
(int(table.get(TableInfo.source_modified_time,"0"))))
schema_file_writer.append(dataset_scehma_record)
dataset_idx += 1
self.dataset_dict[dataset_urn] = dataset_idx
for fields in field_detail_list:
field_record = DatasetFieldRecord(fields)
field_file_writer.append(field_record)
instance_file_writer.flush()
schema_file_writer.flush()
field_file_writer.flush()
self.logger.info("%20s contains %6d tables" % (one_db_info['database'], i))
instance_file_writer.close()
schema_file_writer.close()
field_file_writer.close()
dependency_file_writer.close()
if __name__ == "__main__":
args = sys.argv[1]
t = HiveTransform()
temp_dir = FileUtil.etl_temp_dir(args, "HIVE")
schema_json_file = os.path.join(temp_dir, args[Constant.HIVE_SCHEMA_JSON_FILE_KEY])
instance_csv_file = os.path.join(temp_dir, args[Constant.HIVE_INSTANCE_CSV_FILE_KEY])
schema_csv_file = os.path.join(temp_dir, args[Constant.HIVE_SCHEMA_CSV_FILE_KEY])
field_csv_file = os.path.join(temp_dir, args[Constant.HIVE_FIELD_METADATA_KEY])
dependency_csv_file = os.path.join(temp_dir, args[Constant.HIVE_DEPENDENCY_CSV_FILE_KEY])
try:
t.transform(schema_json_file, instance_csv_file, schema_csv_file, field_csv_file, dependency_csv_file)
finally:
t.curs.close()
t.conn_hms.close()