dify/api/core/indexing_runner.py

755 lines
33 KiB
Python
Raw Normal View History

import concurrent.futures
2023-05-15 08:51:32 +08:00
import datetime
import json
import logging
2023-05-15 08:51:32 +08:00
import re
import threading
2023-05-15 08:51:32 +08:00
import time
import uuid
2024-12-24 18:38:51 +08:00
from typing import Any, Optional, cast
from flask import current_app
2024-12-24 18:38:51 +08:00
from flask_login import current_user # type: ignore
from sqlalchemy.orm.exc import ObjectDeletedError
2023-05-15 08:51:32 +08:00
from configs import dify_config
from core.entities.knowledge_entities import IndexingEstimate, PreviewDetail, QAPreviewDetail
from core.errors.error import ProviderTokenNotInitError
2024-02-01 18:11:57 +08:00
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.cleaner.clean_processor import CleanProcessor
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.docstore.dataset_docstore import DatasetDocumentStore
from core.rag.extractor.entity.extract_setting import ExtractSetting
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.index_processor.index_processor_base import BaseIndexProcessor
from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
from core.rag.models.document import ChildDocument, Document
from core.rag.splitter.fixed_text_splitter import (
EnhanceRecursiveCharacterTextSplitter,
FixedRecursiveCharacterTextSplitter,
)
from core.rag.splitter.text_splitter import TextSplitter
from core.tools.utils.web_reader_tool import get_image_upload_file_ids
2023-05-15 08:51:32 +08:00
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from libs import helper
from models.dataset import ChildChunk, Dataset, DatasetProcessRule, DocumentSegment
from models.dataset import Document as DatasetDocument
2023-05-15 08:51:32 +08:00
from models.model import UploadFile
from services.feature_service import FeatureService
2023-05-15 08:51:32 +08:00
class IndexingRunner:
def __init__(self):
2023-05-15 08:51:32 +08:00
self.storage = storage
self.model_manager = ModelManager()
2023-05-15 08:51:32 +08:00
def run(self, dataset_documents: list[DatasetDocument]):
2023-05-15 08:51:32 +08:00
"""Run the indexing process."""
for dataset_document in dataset_documents:
try:
# get dataset
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
if not dataset:
raise ValueError("no dataset found")
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
.first()
)
2024-12-24 18:38:51 +08:00
if not processing_rule:
raise ValueError("no process rule found")
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
# extract
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(
index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
)
# save segment
self._load_segments(dataset, dataset_document, documents)
# load
self._load(
index_processor=index_processor,
dataset=dataset,
dataset_document=dataset_document,
documents=documents,
)
except DocumentIsPausedError:
raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = "error"
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
db.session.commit()
except ObjectDeletedError:
logging.warning("Document deleted, document id: {}".format(dataset_document.id))
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = "error"
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
db.session.commit()
def run_in_splitting_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is splitting."""
try:
# get dataset
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id, document_id=dataset_document.id
).all()
for document_segment in document_segments:
db.session.delete(document_segment)
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
# delete child chunks
db.session.query(ChildChunk).filter(ChildChunk.segment_id == document_segment.id).delete()
db.session.commit()
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
.first()
)
2024-12-24 18:38:51 +08:00
if not processing_rule:
raise ValueError("no process rule found")
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
# extract
text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
# transform
documents = self._transform(
index_processor, dataset, text_docs, dataset_document.doc_language, processing_rule.to_dict()
)
# save segment
self._load_segments(dataset, dataset_document, documents)
2023-05-15 08:51:32 +08:00
# load
self._load(
index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
)
except DocumentIsPausedError:
raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = "error"
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = "error"
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
db.session.commit()
2023-05-15 08:51:32 +08:00
def run_in_indexing_status(self, dataset_document: DatasetDocument):
"""Run the indexing process when the index_status is indexing."""
try:
# get dataset
dataset = Dataset.query.filter_by(id=dataset_document.dataset_id).first()
2023-05-15 08:51:32 +08:00
if not dataset:
raise ValueError("no dataset found")
2023-05-15 08:51:32 +08:00
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id, document_id=dataset_document.id
).all()
documents = []
if document_segments:
for document_segment in document_segments:
# transform segment to node
if document_segment.status != "completed":
document = Document(
page_content=document_segment.content,
metadata={
"doc_id": document_segment.index_node_id,
"doc_hash": document_segment.index_node_hash,
"document_id": document_segment.document_id,
"dataset_id": document_segment.dataset_id,
},
)
if dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX:
child_chunks = document_segment.child_chunks
if child_chunks:
child_documents = []
for child_chunk in child_chunks:
child_document = ChildDocument(
page_content=child_chunk.content,
metadata={
"doc_id": child_chunk.index_node_id,
"doc_hash": child_chunk.index_node_hash,
"document_id": document_segment.document_id,
"dataset_id": document_segment.dataset_id,
},
)
child_documents.append(child_document)
document.children = child_documents
documents.append(document)
2023-05-15 08:51:32 +08:00
# build index
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id)
.first()
)
index_type = dataset_document.doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
self._load(
index_processor=index_processor, dataset=dataset, dataset_document=dataset_document, documents=documents
)
except DocumentIsPausedError:
raise DocumentIsPausedError("Document paused, document id: {}".format(dataset_document.id))
except ProviderTokenNotInitError as e:
dataset_document.indexing_status = "error"
dataset_document.error = str(e.description)
dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
db.session.commit()
except Exception as e:
logging.exception("consume document failed")
dataset_document.indexing_status = "error"
dataset_document.error = str(e)
dataset_document.stopped_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
db.session.commit()
2023-05-15 08:51:32 +08:00
def indexing_estimate(
self,
tenant_id: str,
extract_settings: list[ExtractSetting],
tmp_processing_rule: dict,
doc_form: Optional[str] = None,
doc_language: str = "English",
dataset_id: Optional[str] = None,
indexing_technique: str = "economy",
) -> IndexingEstimate:
2023-05-15 08:51:32 +08:00
"""
Estimate the indexing for the document.
"""
# check document limit
features = FeatureService.get_features(tenant_id)
if features.billing.enabled:
count = len(extract_settings)
batch_upload_limit = dify_config.BATCH_UPLOAD_LIMIT
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
embedding_model_instance = None
if dataset_id:
dataset = Dataset.query.filter_by(id=dataset_id).first()
if not dataset:
raise ValueError("Dataset not found.")
if dataset.indexing_technique == "high_quality" or indexing_technique == "high_quality":
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
else:
if indexing_technique == "high_quality":
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
preview_texts = [] # type: ignore
total_segments = 0
index_type = doc_form
index_processor = IndexProcessorFactory(index_type).init_index_processor()
for extract_setting in extract_settings:
# extract
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"], rules=json.dumps(tmp_processing_rule["rules"])
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
documents = index_processor.transform(
text_docs,
embedding_model_instance=embedding_model_instance,
process_rule=processing_rule.to_dict(),
tenant_id=current_user.current_tenant_id,
doc_language=doc_language,
preview=True,
)
total_segments += len(documents)
for document in documents:
if len(preview_texts) < 10:
if doc_form and doc_form == "qa_model":
preview_detail = QAPreviewDetail(
question=document.page_content, answer=document.metadata.get("answer") or ""
)
preview_texts.append(preview_detail)
else:
preview_detail = PreviewDetail(content=document.page_content) # type: ignore
if document.children:
preview_detail.child_chunks = [child.page_content for child in document.children] # type: ignore
preview_texts.append(preview_detail)
# delete image files and related db records
image_upload_file_ids = get_image_upload_file_ids(document.page_content)
for upload_file_id in image_upload_file_ids:
image_file = db.session.query(UploadFile).filter(UploadFile.id == upload_file_id).first()
try:
2024-12-24 18:38:51 +08:00
if image_file:
storage.delete(image_file.key)
except Exception:
logging.exception(
"Delete image_files failed while indexing_estimate, \
image_upload_file_is: {}".format(upload_file_id)
)
db.session.delete(image_file)
if doc_form and doc_form == "qa_model":
return IndexingEstimate(total_segments=total_segments * 20, qa_preview=preview_texts, preview=[])
return IndexingEstimate(total_segments=total_segments, preview=preview_texts) # type: ignore
def _extract(
self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict
) -> list[Document]:
2023-05-15 08:51:32 +08:00
# load file
if dataset_document.data_source_type not in {"upload_file", "notion_import", "website_crawl"}:
2023-05-15 08:51:32 +08:00
return []
data_source_info = dataset_document.data_source_info_dict
text_docs = []
if dataset_document.data_source_type == "upload_file":
if not data_source_info or "upload_file_id" not in data_source_info:
raise ValueError("no upload file found")
file_detail = (
db.session.query(UploadFile).filter(UploadFile.id == data_source_info["upload_file_id"]).one_or_none()
)
if file_detail:
extract_setting = ExtractSetting(
datasource_type="upload_file", upload_file=file_detail, document_model=dataset_document.doc_form
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
elif dataset_document.data_source_type == "notion_import":
if (
not data_source_info
or "notion_workspace_id" not in data_source_info
or "notion_page_id" not in data_source_info
):
raise ValueError("no notion import info found")
extract_setting = ExtractSetting(
datasource_type="notion_import",
notion_info={
"notion_workspace_id": data_source_info["notion_workspace_id"],
"notion_obj_id": data_source_info["notion_page_id"],
"notion_page_type": data_source_info["type"],
"document": dataset_document,
"tenant_id": dataset_document.tenant_id,
},
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
elif dataset_document.data_source_type == "website_crawl":
if (
not data_source_info
or "provider" not in data_source_info
or "url" not in data_source_info
or "job_id" not in data_source_info
):
raise ValueError("no website import info found")
extract_setting = ExtractSetting(
datasource_type="website_crawl",
website_info={
"provider": data_source_info["provider"],
"job_id": data_source_info["job_id"],
"tenant_id": dataset_document.tenant_id,
"url": data_source_info["url"],
"mode": data_source_info["mode"],
"only_main_content": data_source_info["only_main_content"],
},
document_model=dataset_document.doc_form,
)
text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule["mode"])
2023-05-15 08:51:32 +08:00
# update document status to splitting
self._update_document_index_status(
document_id=dataset_document.id,
2023-05-15 08:51:32 +08:00
after_indexing_status="splitting",
extra_update_params={
DatasetDocument.word_count: sum(len(text_doc.page_content) for text_doc in text_docs),
DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
},
2023-05-15 08:51:32 +08:00
)
# replace doc id to document model id
text_docs = cast(list[Document], text_docs)
2023-05-15 08:51:32 +08:00
for text_doc in text_docs:
2024-12-24 18:38:51 +08:00
if text_doc.metadata is not None:
text_doc.metadata["document_id"] = dataset_document.id
text_doc.metadata["dataset_id"] = dataset_document.dataset_id
2023-05-15 08:51:32 +08:00
return text_docs
@staticmethod
def filter_string(text):
text = re.sub(r"<\|", "<", text)
text = re.sub(r"\|>", ">", text)
text = re.sub(r"[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]", "", text)
# Unicode U+FFFE
text = re.sub("\ufffe", "", text)
2023-06-28 14:58:40 +08:00
return text
2023-05-15 08:51:32 +08:00
@staticmethod
def _get_splitter(
processing_rule_mode: str,
max_tokens: int,
chunk_overlap: int,
separator: str,
embedding_model_instance: Optional[ModelInstance],
) -> TextSplitter:
2023-05-15 08:51:32 +08:00
"""
Get the NodeParser object according to the processing rule.
"""
if processing_rule_mode in ["custom", "hierarchical"]:
2023-05-15 08:51:32 +08:00
# The user-defined segmentation rule
max_segmentation_tokens_length = dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH
if max_tokens < 50 or max_tokens > max_segmentation_tokens_length:
raise ValueError(f"Custom segment length should be between 50 and {max_segmentation_tokens_length}.")
2023-05-15 08:51:32 +08:00
if separator:
separator = separator.replace("\\n", "\n")
2023-05-15 08:51:32 +08:00
character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
chunk_size=max_tokens,
chunk_overlap=chunk_overlap,
fixed_separator=separator,
separators=["\n\n", "", ". ", " ", ""],
embedding_model_instance=embedding_model_instance,
2023-05-15 08:51:32 +08:00
)
else:
# Automatic segmentation
2024-12-24 18:38:51 +08:00
automatic_rules: dict[str, Any] = dict(DatasetProcessRule.AUTOMATIC_RULES["segmentation"])
character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
2024-12-24 18:38:51 +08:00
chunk_size=automatic_rules["max_tokens"],
chunk_overlap=automatic_rules["chunk_overlap"],
separators=["\n\n", "", ". ", " ", ""],
embedding_model_instance=embedding_model_instance,
2023-05-15 08:51:32 +08:00
)
return character_splitter # type: ignore
2023-05-15 08:51:32 +08:00
def _split_to_documents_for_estimate(
self, text_docs: list[Document], splitter: TextSplitter, processing_rule: DatasetProcessRule
) -> list[Document]:
2023-05-15 08:51:32 +08:00
"""
Split the text documents into nodes.
"""
2024-12-24 18:38:51 +08:00
all_documents: list[Document] = []
2023-05-15 08:51:32 +08:00
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.page_content, processing_rule)
text_doc.page_content = document_text
2023-05-15 08:51:32 +08:00
# parse document to nodes
documents = splitter.split_documents([text_doc])
split_documents = []
for document in documents:
if document.page_content is None or not document.page_content.strip():
continue
2024-12-24 18:38:51 +08:00
if document.metadata is not None:
doc_id = str(uuid.uuid4())
hash = helper.generate_text_hash(document.page_content)
document.metadata["doc_id"] = doc_id
document.metadata["doc_hash"] = hash
split_documents.append(document)
all_documents.extend(split_documents)
2023-05-15 08:51:32 +08:00
return all_documents
2023-05-15 08:51:32 +08:00
@staticmethod
def _document_clean(text: str, processing_rule: DatasetProcessRule) -> str:
2023-05-15 08:51:32 +08:00
"""
Clean the document text according to the processing rules.
"""
if processing_rule.mode == "automatic":
rules = DatasetProcessRule.AUTOMATIC_RULES
else:
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
document_text = CleanProcessor.clean(text, {"rules": rules})
2023-05-15 08:51:32 +08:00
return document_text
2023-05-15 08:51:32 +08:00
@staticmethod
def format_split_text(text: str) -> list[QAPreviewDetail]:
regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
2023-12-11 15:53:37 +08:00
matches = re.findall(regex, text, re.UNICODE)
2023-11-13 19:05:32 +08:00
return [QAPreviewDetail(question=q, answer=re.sub(r"\n\s*", "\n", a.strip())) for q, a in matches if q and a]
def _load(
self,
index_processor: BaseIndexProcessor,
dataset: Dataset,
dataset_document: DatasetDocument,
documents: list[Document],
) -> None:
2023-05-15 08:51:32 +08:00
"""
insert index and update document/segment status to completed
2023-05-15 08:51:32 +08:00
"""
embedding_model_instance = None
if dataset.indexing_technique == "high_quality":
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
2023-05-15 08:51:32 +08:00
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
# create keyword index
create_keyword_thread = threading.Thread(
target=self._process_keyword_index,
args=(current_app._get_current_object(), dataset.id, dataset_document.id, documents), # type: ignore
)
create_keyword_thread.start()
max_workers = 10
if dataset.indexing_technique == "high_quality":
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
# Distribute documents into multiple groups based on the hash values of page_content
# This is done to prevent multiple threads from processing the same document,
# Thereby avoiding potential database insertion deadlocks
document_groups: list[list[Document]] = [[] for _ in range(max_workers)]
for document in documents:
hash = helper.generate_text_hash(document.page_content)
group_index = int(hash, 16) % max_workers
document_groups[group_index].append(document)
for chunk_documents in document_groups:
if len(chunk_documents) == 0:
continue
futures.append(
executor.submit(
self._process_chunk,
2024-12-24 18:38:51 +08:00
current_app._get_current_object(), # type: ignore
index_processor,
chunk_documents,
dataset,
dataset_document,
embedding_model_instance,
)
)
for future in futures:
tokens += future.result()
if dataset_document.doc_form != IndexType.PARENT_CHILD_INDEX:
create_keyword_thread.join()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="completed",
extra_update_params={
DatasetDocument.tokens: tokens,
DatasetDocument.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
DatasetDocument.error: None,
},
)
@staticmethod
def _process_keyword_index(flask_app, dataset_id, document_id, documents):
with flask_app.app_context():
dataset = Dataset.query.filter_by(id=dataset_id).first()
if not dataset:
raise ValueError("no dataset found")
keyword = Keyword(dataset)
keyword.create(documents)
if dataset.indexing_technique != "high_quality":
document_ids = [document.metadata["doc_id"] for document in documents]
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == document_id,
DocumentSegment.dataset_id == dataset_id,
DocumentSegment.index_node_id.in_(document_ids),
DocumentSegment.status == "indexing",
).update(
{
DocumentSegment.status: "completed",
DocumentSegment.enabled: True,
DocumentSegment.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
}
)
db.session.commit()
def _process_chunk(
self, flask_app, index_processor, chunk_documents, dataset, dataset_document, embedding_model_instance
):
with flask_app.app_context():
2023-05-15 08:51:32 +08:00
# check document is paused
self._check_document_paused_status(dataset_document.id)
tokens = 0
if embedding_model_instance:
tokens += sum(
embedding_model_instance.get_text_embedding_num_tokens([document.page_content])
for document in chunk_documents
)
# load index
index_processor.load(dataset, chunk_documents, with_keywords=False)
2023-05-15 08:51:32 +08:00
document_ids = [document.metadata["doc_id"] for document in chunk_documents]
2023-05-15 08:51:32 +08:00
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == dataset_document.id,
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.index_node_id.in_(document_ids),
DocumentSegment.status == "indexing",
).update(
{
DocumentSegment.status: "completed",
DocumentSegment.enabled: True,
DocumentSegment.completed_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
}
)
2023-05-15 08:51:32 +08:00
db.session.commit()
return tokens
2023-05-15 08:51:32 +08:00
@staticmethod
def _check_document_paused_status(document_id: str):
indexing_cache_key = "document_{}_is_paused".format(document_id)
2023-05-15 08:51:32 +08:00
result = redis_client.get(indexing_cache_key)
if result:
raise DocumentIsPausedError()
2023-05-15 08:51:32 +08:00
@staticmethod
def _update_document_index_status(
document_id: str, after_indexing_status: str, extra_update_params: Optional[dict] = None
) -> None:
2023-05-15 08:51:32 +08:00
"""
Update the document indexing status.
"""
count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
2023-05-15 08:51:32 +08:00
if count > 0:
raise DocumentIsPausedError()
document = DatasetDocument.query.filter_by(id=document_id).first()
if not document:
raise DocumentIsDeletedPausedError()
2023-05-15 08:51:32 +08:00
update_params = {DatasetDocument.indexing_status: after_indexing_status}
2023-05-15 08:51:32 +08:00
if extra_update_params:
update_params.update(extra_update_params)
DatasetDocument.query.filter_by(id=document_id).update(update_params)
2023-05-15 08:51:32 +08:00
db.session.commit()
@staticmethod
def _update_segments_by_document(dataset_document_id: str, update_params: dict) -> None:
2023-05-15 08:51:32 +08:00
"""
Update the document segment by document id.
"""
DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
2023-05-15 08:51:32 +08:00
db.session.commit()
def _transform(
self,
index_processor: BaseIndexProcessor,
dataset: Dataset,
text_docs: list[Document],
doc_language: str,
process_rule: dict,
) -> list[Document]:
# get embedding model instance
embedding_model_instance = None
if dataset.indexing_technique == "high_quality":
if dataset.embedding_model_provider:
embedding_model_instance = self.model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
else:
embedding_model_instance = self.model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
documents = index_processor.transform(
text_docs,
embedding_model_instance=embedding_model_instance,
process_rule=process_rule,
tenant_id=dataset.tenant_id,
doc_language=doc_language,
)
return documents
def _load_segments(self, dataset, dataset_document, documents):
# save node to document segment
doc_store = DatasetDocumentStore(
dataset=dataset, user_id=dataset_document.created_by, document_id=dataset_document.id
)
# add document segments
doc_store.add_documents(docs=documents, save_child=dataset_document.doc_form == IndexType.PARENT_CHILD_INDEX)
# update document status to indexing
cur_time = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
self._update_document_index_status(
document_id=dataset_document.id,
after_indexing_status="indexing",
extra_update_params={
DatasetDocument.cleaning_completed_at: cur_time,
DatasetDocument.splitting_completed_at: cur_time,
},
)
# update segment status to indexing
self._update_segments_by_document(
dataset_document_id=dataset_document.id,
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
},
)
pass
2023-05-15 08:51:32 +08:00
class DocumentIsPausedError(Exception):
2023-05-15 08:51:32 +08:00
pass
class DocumentIsDeletedPausedError(Exception):
pass