mirror of
				https://github.com/langgenius/dify.git
				synced 2025-10-31 02:42:59 +00:00 
			
		
		
		
	
		
			
	
	
		
			100 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
		
		
			
		
	
	
			100 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
|   | import json | ||
|  | import logging | ||
|  | import time | ||
|  | 
 | ||
|  | import click | ||
|  | from celery import shared_task | ||
|  | from langchain.schema import Document | ||
|  | from werkzeug.exceptions import NotFound | ||
|  | 
 | ||
|  | from core.index.index import IndexBuilder | ||
|  | from extensions.ext_database import db | ||
|  | from extensions.ext_redis import redis_client | ||
|  | from models.dataset import Dataset | ||
|  | from models.model import MessageAnnotation, App, AppAnnotationSetting | ||
|  | from services.dataset_service import DatasetCollectionBindingService | ||
|  | 
 | ||
|  | 
 | ||
|  | @shared_task(queue='dataset') | ||
|  | def batch_import_annotations_task(job_id: str, content_list: list[dict], app_id: str, tenant_id: str, | ||
|  |                                   user_id: str): | ||
|  |     """
 | ||
|  |     Add annotation to index. | ||
|  |     :param job_id: job_id | ||
|  |     :param content_list: content list | ||
|  |     :param tenant_id: tenant id | ||
|  |     :param app_id: app id | ||
|  |     :param user_id: user_id | ||
|  | 
 | ||
|  |     """
 | ||
|  |     logging.info(click.style('Start batch import annotation: {}'.format(job_id), fg='green')) | ||
|  |     start_at = time.perf_counter() | ||
|  |     indexing_cache_key = 'app_annotation_batch_import_{}'.format(str(job_id)) | ||
|  |     # get app info | ||
|  |     app = db.session.query(App).filter( | ||
|  |         App.id == app_id, | ||
|  |         App.tenant_id == tenant_id, | ||
|  |         App.status == 'normal' | ||
|  |     ).first() | ||
|  | 
 | ||
|  |     if app: | ||
|  |         try: | ||
|  |             documents = [] | ||
|  |             for content in content_list: | ||
|  |                 annotation = MessageAnnotation( | ||
|  |                     app_id=app.id, | ||
|  |                     content=content['answer'], | ||
|  |                     question=content['question'], | ||
|  |                     account_id=user_id | ||
|  |                 ) | ||
|  |                 db.session.add(annotation) | ||
|  |                 db.session.flush() | ||
|  | 
 | ||
|  |                 document = Document( | ||
|  |                     page_content=content['question'], | ||
|  |                     metadata={ | ||
|  |                         "annotation_id": annotation.id, | ||
|  |                         "app_id": app_id, | ||
|  |                         "doc_id": annotation.id | ||
|  |                     } | ||
|  |                 ) | ||
|  |                 documents.append(document) | ||
|  |             # if annotation reply is enabled , batch add annotations' index | ||
|  |             app_annotation_setting = db.session.query(AppAnnotationSetting).filter( | ||
|  |                 AppAnnotationSetting.app_id == app_id | ||
|  |             ).first() | ||
|  | 
 | ||
|  |             if app_annotation_setting: | ||
|  |                 dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding_by_id_and_type( | ||
|  |                     app_annotation_setting.collection_binding_id, | ||
|  |                     'annotation' | ||
|  |                 ) | ||
|  |                 if not dataset_collection_binding: | ||
|  |                     raise NotFound("App annotation setting not found") | ||
|  |                 dataset = Dataset( | ||
|  |                     id=app_id, | ||
|  |                     tenant_id=tenant_id, | ||
|  |                     indexing_technique='high_quality', | ||
|  |                     embedding_model_provider=dataset_collection_binding.provider_name, | ||
|  |                     embedding_model=dataset_collection_binding.model_name, | ||
|  |                     collection_binding_id=dataset_collection_binding.id | ||
|  |                 ) | ||
|  | 
 | ||
|  |                 index = IndexBuilder.get_index(dataset, 'high_quality') | ||
|  |                 if index: | ||
|  |                     index.add_texts(documents) | ||
|  | 
 | ||
|  |             db.session.commit() | ||
|  |             redis_client.setex(indexing_cache_key, 600, 'completed') | ||
|  |             end_at = time.perf_counter() | ||
|  |             logging.info( | ||
|  |                 click.style( | ||
|  |                     'Build index successful for batch import annotation: {} latency: {}'.format(job_id, end_at - start_at), | ||
|  |                     fg='green')) | ||
|  |         except Exception as e: | ||
|  |             db.session.rollback() | ||
|  |             redis_client.setex(indexing_cache_key, 600, 'error') | ||
|  |             indexing_error_msg_key = 'app_annotation_batch_import_error_msg_{}'.format(str(job_id)) | ||
|  |             redis_client.setex(indexing_error_msg_key, 600, str(e)) | ||
|  |             logging.exception("Build index for batch import annotations failed") |