dify/api/core/workflow/README.md

133 lines
3.8 KiB
Markdown
Raw Normal View History

# Workflow
## Project Overview
This is the workflow graph engine module of Dify, implementing a queue-based distributed workflow execution system. The engine handles agentic AI workflows with support for parallel execution, node iteration, conditional logic, and external command control.
## Architecture
### Core Components
The graph engine follows a layered architecture with strict dependency rules:
1. **Graph Engine** (`graph_engine/`) - Orchestrates workflow execution
- **Manager** - External control interface for stop/pause/resume commands
- **Worker** - Node execution runtime
- **Command Processing** - Handles control commands (abort, pause, resume)
- **Event Management** - Event propagation and layer notifications
- **Graph Traversal** - Edge processing and skip propagation
- **Response Coordinator** - Path tracking and session management
- **Layers** - Pluggable middleware (debug logging, execution limits)
- **Command Channels** - Communication channels (InMemory, Redis)
1. **Graph** (`graph/`) - Graph structure and runtime state
- **Graph Template** - Workflow definition
- **Edge** - Node connections with conditions
- **Runtime State Protocol** - State management interface
1. **Nodes** (`nodes/`) - Node implementations
- **Base** - Abstract node classes and variable parsing
- **Specific Nodes** - LLM, Agent, Code, HTTP Request, Iteration, Loop, etc.
1. **Events** (`node_events/`) - Event system
- **Base** - Event protocols
- **Node Events** - Node lifecycle events
1. **Entities** (`entities/`) - Domain models
- **Variable Pool** - Variable storage
- **Graph Init Params** - Initialization configuration
## Key Design Patterns
### Command Channel Pattern
External workflow control via Redis or in-memory channels:
```python
# Send stop command to running workflow
channel = RedisChannel(redis_client, f"workflow:{task_id}:commands")
channel.send_command(AbortCommand(reason="User requested"))
```
### Layer System
Extensible middleware for cross-cutting concerns:
```python
engine = GraphEngine(graph)
engine.add_layer(DebugLoggingLayer(level="INFO"))
engine.add_layer(ExecutionLimitsLayer(max_nodes=100))
```
### Event-Driven Architecture
All node executions emit events for monitoring and integration:
- `NodeRunStartedEvent` - Node execution begins
- `NodeRunSucceededEvent` - Node completes successfully
- `NodeRunFailedEvent` - Node encounters error
- `GraphRunStartedEvent/GraphRunCompletedEvent` - Workflow lifecycle
### Variable Pool
Centralized variable storage with namespace isolation:
```python
# Variables scoped by node_id
pool.add(["node1", "output"], value)
result = pool.get(["node1", "output"])
```
## Import Architecture Rules
The codebase enforces strict layering via import-linter:
1. **Workflow Layers** (top to bottom):
- graph_engine → graph_events → graph → nodes → node_events → entities
1. **Graph Engine Internal Layers**:
- orchestration → command_processing → event_management → graph_traversal → domain
1. **Domain Isolation**:
- Domain models cannot import from infrastructure layers
1. **Command Channel Independence**:
- InMemory and Redis channels must remain independent
## Common Tasks
### Adding a New Node Type
1. Create node class in `nodes/<node_type>/`
1. Inherit from `BaseNode` or appropriate base class
1. Implement `_run()` method
1. Register in `nodes/node_mapping.py`
1. Add tests in `tests/unit_tests/core/workflow/nodes/`
### Implementing a Custom Layer
1. Create class inheriting from `Layer` base
1. Override lifecycle methods: `on_graph_start()`, `on_event()`, `on_graph_end()`
1. Add to engine via `engine.add_layer()`
### Debugging Workflow Execution
Enable debug logging layer:
```python
debug_layer = DebugLoggingLayer(
level="DEBUG",
include_inputs=True,
include_outputs=True
)
```